

Restricted - External

M13: Implementing Payer
Authentication Direct REST API

Version 1.1
Date January 2021

 M13: Implementing Payer Authentication Direct REST API - 2

Restricted - External

1 Version Control

Revision Date Description

1.0
November

2020
Initial release

1.1 Jan 2020 Clarified use of Flex Microform transient token.

 M13: Implementing Payer Authentication Direct REST API - 3

Restricted - External

2 Table of Contents

M13: Implementing Payer Authentication Direct REST API .. 1

1 Version Control .. 2

2 Table of Contents .. 3

3 Introduction ... 5

4 Payer Authentication 3DS 2.x Overview .. 6

4.1 Prerequisites ..6

4.2 Overview ..6

4.2.1 High level steps ...7

5 Payer Authentication 3DS 2.x Detailed Steps .. 9

5.1 STEP 1 - Setup Payer Auth API Request ...9

5.1.1 Key Request Fields ..9

5.1.2 Request Example 1 - Setup Payer Auth Service using FLEX token ..9

5.1.3 Request Example 2 - Setup Payer Auth Service using card details ...9

5.1.4 Request Example 3 - Setup Payer Auth Service using TMS token ...9

5.1.5 Key Response fields ... 10

5.1.6 Reply Example 1 - Setup Payer Auth .. 10

5.2 STEP 2 - Device Data Collection ... 10

5.3 STEP 3 - Add event Listener ... 11

5.4 STEP 4 - Check Payer Auth Enrollment + Authorization API request .. 11

5.4.1 Key Request fields .. 12

5.4.2 Request Example 1 - Process a Payment + CONSUMER_AUTHENTICATION using FLEX token 12

5.4.3 Request Example 2 - Check Payer Auth Enrollment using Card Details ... 13

5.4.4 Request Example 3 - Check Payer Auth Enrollment using FLEX token .. 14

5.4.5 Key Response fields ... 14

5.4.6 Reply Example 1 - Process a Payment - Cardholder Enrolled ... 15

5.4.7 Reply Example 2 - Process a Payment - Cardholder NOT enrolled .. 16

5.5 STEP 5 - POST to stepUpUrl ... 17

5.6 STEP 6 - Receive the Authentication Result ... 18

5.7 STEP 7 - Validate Authentication Results + Authorization API request .. 18

5.7.1 Key Request fields .. 19

5.7.2 Request Example 1 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION using FLEX token ... 19

5.7.3 Request Example 2 - Validate Authentication Results .. 20

 M13: Implementing Payer Authentication Direct REST API - 4

Restricted - External

5.7.4 Key Response fields ... 20

5.7.5 Reply Example 1 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION 21

5.7.6 Reply Example 2 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION 22

5.7.7 Reply Example 3 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION 23

5.7.8 Reply Example 4 - Validate Authentication Results - Successful Authentication .. 24

6 Flex Microform with Payer Authentication ... 25

7 Payer Authentication Testing ... 25

8 Generating a REST API key .. 25

Appendix A - Extracting JTI from Flex Microform Transient Token... 29

Disclaimer .. 29

 M13: Implementing Payer Authentication Direct REST API - 5

Restricted - External

3 Introduction

This document describes in detail how to implement Direct Payer Authentication, to support 3D Secure 2.x for card
payment transactions on both mobile and website channels.

The Direct Connection API Payer Authentication workflow is an alternative to the Hybrid integration. It does NOT
require the use of Cardinal Commerce’s Songbird JavaScript library (and any other 3rd party libraries). Also, unlike the
Hybrid model, it does not require knowledge of the Cardinal Commerce Payer Auth credentials. The Direct API can be
used with the SOAP Toolkit API service or REST API for the backend services, but for new integrations, REST is
recommended. This document will concentrate on REST.

In 1999 3D-Secure 1.0 (Payer Authentication service) was introduced to help prevent fraud for online purchases. The

following card schemes support 3DS 1.0:

- Visa Verified by Visa,

- MasterCard and Maestro SecureCode,

- American Express SafeKey,

- JCB J/Secure,

- Diners Club ProtectBuy,

- Discover ProtectBuy.

Payer Authentication (PA) provides an additional level of security for online payments, whereby cardholders who are

enrolled into PA provide a password to complete online transactions.

In 2020 3D-Secure 2.x is being rolled out. 3DS 2.x eliminates all the disadvantages of the 3DS 1.0. It collects ten times

more data during the process, allowing the issuer to better determine if the customer is risky or not. It provides much

better customer experience for mobile device users, and makes the whole PA process more flexible.

 M13: Implementing Payer Authentication Direct REST API - 6

Restricted - External

4 Payer Authentication 3DS 2.x Overview

4.1 Prerequisites
Before you start running 3DS 2.x transactions in Test or in Live environment, four initial requirements must be fulfilled:

1) Your Smartpay Fuse MID must be configured specifically for 3DS 2.x.

2) Your Smartpay Fuse MID must be setup with three credentials, provided by Cardinal Commerce. These will be

visible in the Enterprise Business Center when set up.

IMPORTANT - Although not required in your integration, these credentials must be present for 3DS Direct to

work correctly.

Parameter
name

Description Example

API Identifier A non-secure value that should be passed within the JWT
under the iss claim.

5b30e68e6fe3d126b4037b02

Org Unit Id A non-secure value that should be passed within the JWT
under the OrgUnitId claim.

5b2d8dacff626b051cb9f891

API Key A secure value that should never be rendered or
displayed anywhere within a browser/mobile app. This
value must only ever be stored on the merchant server.
The API Key is used to sign the JWT initialize the
connection to Cardinal Commerce, and to verify the JWT
signature received back from Cardinal. It must never be
included within the JWT itself.

2725b3a8-af13-4e5b-ba77-
c593a1207996

Contact the Support team to ensure that the gateway MID is configured for 3DS2 and the above credentials are in

place.

3) You must have set up a REST security Key for your Transacting Gateway MID. See Section 8. Generating a REST

API key for details.

4) You customer browser version must be higher than in the table below:

Browser type Version

Desktop IE 10+
Edge 13+
Firefox 42+
Chrome 48+
Safari 7.1+

Mobile iOS Safari 7.1+
Android Browser 4.4+
Chrome Mobile 48+

4.2 Overview
The following diagram gives a high-level view of the workflow, involved in the Direct API integration. Detailed

descriptions of each step follow later in this document.

 M13: Implementing Payer Authentication Direct REST API - 7

Restricted - External

Figure 1 - High-level Workflow`

4.2.1 High level steps

Step Description

1 Setup Payer Auth API call
Call out to server-side to generate Setup Payer Auth API call with Card details/Transient
Token. This call returns a deviceCollectionUrl and an accessToken JWT, which are
required for Device Data collection.

2 Device Data Collection
“Silently” POST the accessToken JWT to the deviceCollectionUrl returned by Setup Payer
Auth (STEP 1)
An event will be triggered when device collection is complete.

 M13: Implementing Payer Authentication Direct REST API - 8

Restricted - External

3 Add Event Listener
Add a function to handle the device-collection complete event.

profile.complete event
A sessionID will be returned in the event payload, which is then used in the Check Payer
Auth Enrollment API.

4 Check Payer Auth Enrolment + Optional Authorization API Call
Call the Check Payer Auth Enrollment API to check whether the cardholder is enrolled into
3DS.

Supply sessionID in the consumerAuthenticationInformation:referenceId field and
specify consumerAuthenticationInformation:returnUrl to redirect the cardholder to in
the event that authentication window is required.

It is recommended to perform an authorization request in the same call. If the cardholder
is NOT enrolled then the Authorization request will be processed, and the system will
populate the request with the correct values to indicate that 3DS was attempted. If the
cardholder IS enrolled and authentication is required then the Authorization request will
be ignored.

If authentication is required, then stepUpUrl and accessToken JWT will be returned.

5 POST to stepUpUrl
POST the accessToken JWT to the stepUpUrl returned by Payer Auth Enrolment.
Typically, this would be in an Iframe.

The cardholder authenticates to the Issuer in a 3DS window, although in some cases this
is not required.

6 Redirect to return Url
The browser/Iframe is redirected to the returnUrl specified in the Payer Auth Enrolment
check. authenticationTransactionId will be returned in the payload, and is used in the
next step.

7 Validate Authentication Results + Optional Authorization API Call
Call the Payer Auth Validate Service to retrieve various fields required in the Authorization
request to indicate that 3DS was attempted and successful.

Supply authenticationTransactionId in the consumerAuthenticationInformation:
authenticationTransactionId field.

It is recommended to perform an Authorization request in the same call, as the system
will populate the Authorization request with the correct values from the Validation
request. For this reason you must supply full order/billing details, as well as cards details,
a FLEX transient token or TMS permanent token.

8 Display result to Cardholder

 M13: Implementing Payer Authentication Direct REST API - 9

Restricted - External

5 Payer Authentication 3DS 2.x Detailed Steps

5.1 STEP 1 - Setup Payer Auth API Request
The Payer Authentication Setup service is called on the server side after the customer has entered their card details.

Typically, you would use FLEX Microform to capture the card details, or you may have previously captured card details

stored in a TMS token, but you can also supply “actual” card details. The Payer Authentication Setup service must be

called on its own without including other Smartpay Fuse services.

5.1.1 Key Request Fields

See the Developer Center for comprehensive request and response details: https://developer.cybersource.com/api-

reference-assets/index.html#payer-authentication_payer-authentication_setup-payer-auth

5.1.2 Request Example 1 - Setup Payer Auth Service using FLEX token

{
 "clientReferenceInformation": {
 "code": "cybs_test"
 },
 "tokenInformation": {
 "transientToken": "1E3HQL26RVJPQBPF6ELASS2FRJ51A7F3KABU79H26NEE7C1Q3K3C5F993DF1042F"
 }
}

N.B The above example assumes that the expiry date fields have been included in the FLEX token.

IMPORT NOTE

The value of “tokenInformation->transientToken” is the value of the JTI claim in the JWT returned by Flex Microform.

See Appendix A - Extracting JTI from Flex Microform Transient Token for further details.

5.1.3 Request Example 2 - Setup Payer Auth Service using card details

{
 "clientReferenceInformation": {
 "code": "cybs_test"
 },
 "paymentInformation": {
 "card": {
 "type": "001",
 "expirationMonth": "12",
 "expirationYear": "2020",
 "number": "400000xxxxxx0002"
 }
 }
}

5.1.4 Request Example 3 - Setup Payer Auth Service using TMS token

{
 "clientReferenceInformation": {
 "code": "cybs_test"
 },
 "paymentInformation": {
 "customer": {

https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication_payer-authentication_setup-payer-auth
https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication_payer-authentication_setup-payer-auth

 M13: Implementing Payer Authentication Direct REST API - 10

Restricted - External

 "id": "B103500B4BE49012E05341588E0A7655"
 }
 }
}

5.1.5 Key Response fields
The Setup Payer Auth API will return the following key fields:

Field Meaning

status

Indicates status of the call. Possible values:
COMPLETED: the call was successful.
FAILED: an error occurred.

consumerAuthenticationInformation:
accessToken

JSON Web Token (JWT) used to authenticate the consumer with the
authentication provider.
Required for next step - Device Data Collection.

consumerAuthenticationInformation:
deviceDataCollectionUrl

The deviceDataCollectionUrl is the location to send the
Authentication JWT when invoking the Device Data collection process.
Required for next step - Device Data Collection.

consumerAuthenticationInformation:
referenceId

This identifier represents the device data collection session.
Required for subsequent step - Payer Auth Enrollment Check.

5.1.6 Reply Example 1 - Setup Payer Auth

The following example illustrates the Setup Payer Auth REST response:

{
 "consumerAuthenticationInformation": {
 "accessToken": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiIwNTAzMWY0NS02NjE2LTRjYzYtO
DAyZi1iNTRkZTg3MWNkMDkiLCJpYXQiOjE2MDQzMjczNDUsImlzcyI6IjVkZDgzYmYwMGU0MjNkMTQ5OGRjYmFjYSIsImV4cCI
6MTYwNDMzMDk0NSwiT3JnVW5pdElkIjoiNWVlNzVmYThjYTkyMjAwZjdmOGI4MGY0IiwiUmVmZXJlbmNlSWQiOiI4ZjEyYTI4M
i0xODM1LTRiYTYtOWUwYi1hZDAxYjU1NTljYTYifQ.W4ADdw2x77-KflxMoQebIFWT8A0Gyj7hoWuFRroL0Ho",
 "deviceDataCollectionUrl": "https://centinelapistag.cardinalcommerce.com/V1/Cruise/Collect
",
 "referenceId": "8f12a282-1835-4ba6-9e0b-ad01b5559ca6",
 "token": "AxizbwSTR5tEP2ZV1YH7AAIBURwwcdgeABM4ZNJMvRixBOTATAAAUANa"
 },
 "id": "6043273449186077803003",
 "status": "COMPLETED",
 "submitTimeUtc": "2020-11-02T14:29:05Z"
}

5.2 STEP 2 - Device Data Collection
Device Data Collection is initiated on the front end after you receive the Setup Payer Auth reply as described above. A

hidden 1x1pixel iframe is rendered to the browser in order to profile the customer device. The response depends on

the card-issuing bank and can take 3 to 5 seconds. If you proceed with the Check Payer Auth Enrollment service (see

next step) before a response is received, Smartpay Fuse will fall back to 3D Secure 1.0.

Initiate a form POST in a hidden iframe and send the accessToken JWT to the deviceDataCollectionUrl URL returned by

Setup Payer Auth:

<iframe name=”ddc-iframe” height="1" width="1" style="display: none;">

 M13: Implementing Payer Authentication Direct REST API - 11

Restricted - External

</iframe>
<form id="ddc-form" target=”ddc-iframe” method="POST" action="<<deviceDataCollectionUrl>>">
<input type="hidden" name="JWT" value="<<accessToken>>" />
</form>

You can add JavaScript to invoke the iframe form POST automatically when the window loads - if you already have the

response from Setup Payer Auth. Place the following JavaScript after the closing </body> element:

<script>
window.onload = function() {
var ddcForm = document.querySelector('#ddc-form');
if(ddcForm) // ddc form exists
ddcForm.submit();
}
</script>

You may also choose to submit the form at a different time, but you must do it before requesting the Check Payer Auth

Enrollment.

5.3 STEP 3 - Add event Listener
After device data collection has completed, an event will be generated. You will need to trap this event. The Example

below shows how to subscribe to the event and add JavaScript to receive the response from the device data collection

iframe. Place the JavaScript after the closing </body> element.

Note that the event.origin URL is variable depending on your environment:

- Test: https://centinelapistag.cardinalcommerce.com

- Production: https://centinelapi.cardinalcommerce.com

<script>
window.addEventListener("message", (event) => {
 // {MessageType: "profile.completed", Session Id: "0_57f063fd-659a-
 // 4779-b45b-9e456fdb7935", Status: true}
 if (event.origin === "https://centinelapistag.cardinalcommerce.com") {
 let data = JSON.parse(event.data);
 console.log('Merchant received a message:', data);
 }
 if (data !== undefined && data.Status) {
 console.log('Songbird ran DF successfully');
 }
}, false);
</script>

N.B. There is no requirement to retain any of the data items received in the event payload, however data.SessionId will

be the same value as consumerAuthenticationInformation:referenceId returned by Setup Payer Auth.

5.4 STEP 4 - Check Payer Auth Enrollment + Authorization API request
To check whether the cardholder is enrolled in 3DS, submit a Check Payer Auth Enrollment API call OR submit a

Process a Payment request and include a Payer Auth Enrollment check (CONSUMER_AUTHENTICATION) in the same

call. The latter approach is recommended in almost all circumstances, unless there is a specific reason to separate the

Payer Authentication flow from the payment flow. With the combined call, if the cardholder is NOT enrolled, then the

authorization request is run and automatically populated with the correct parameters to indicate that 3DS was

https://centinelapistag.cardinalcommerce.com/

 M13: Implementing Payer Authentication Direct REST API - 12

Restricted - External

attempted by the merchant. If the cardholder IS enrolled then the Authorization request will NOT be run and must be

submitted again after the authentication process has completed.

5.4.1 Key Request fields

It is recommended to include as much data as possible in your request, as this will increase the chance that the Issuer

will not require a challenge screen. See the Developer Center for comprehensive request and response details:

 Process a Payment:

o https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-

payment

 Check Payer Auth Enrollment:

o https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication_payer-

authentication_check-payer-auth-enrollment_requestfielddescription

The following request fields are mandatory:

 processingInformation:

o actionList: the static value “CONSUMER_AUTHENTICATION”

N.B Applicable only to the Process a Payment API.

 Payment card details: FLEX transient token, TMS token or card details.

 consumerAuthenticationInformation:

o returnUrl: In the event that a StepUp challenge screen is required, Smartpay Fuse adds this return

URL to the step-up JWT and returns it in the response of the Payer Authentication enrollment call. The

merchant's return URL page serves as a listening URL. Once the bank session completes, the merchant

receives a POST to their URL. This response contains the completed bank session’s transactionId. The

merchant’s return page should capture the transaction ID and send it in the Payer Authentication

validation call.

o referenceId: the value of consumerAuthenticationInformation:referenceId returned by the Payer

Auth Setup API.

5.4.2 Request Example 1 - Process a Payment + CONSUMER_AUTHENTICATION using FLEX token

{
 "request": {
 "clientReferenceInformation": {
 "code": "1604399973588"
 },
 "processingInformation": {
 "actionList": [
 "CONSUMER_AUTHENTICATION"
]
 },
 "orderInformation": {
 "amountDetails": {
 "totalAmount": "19.99",
 "currency": "GBP"
 },
 "billTo": {
 "firstName": "John",
 "lastName": "Doe",
 "address1": "High House",
 "locality": "Redditch",

https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment
https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication_payer-authentication_check-payer-auth-enrollment_requestfielddescription
https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication_payer-authentication_check-payer-auth-enrollment_requestfielddescription

 M13: Implementing Payer Authentication Direct REST API - 13

Restricted - External

 "postalCode": "WR7 3DQ",
 "country": "GB",
 "email": "john@test.com"
 }
 },
 "tokenInformation": {
 "jti": "1C40V9WCUEZR3T0D3Z2TBAXJMJHF42K0C419SWAN6OG0BUCK5TKH5FA136F1E1B6"
 },
 "consumerAuthenticationInformation": {
 "referenceId": "18818b40-05e0-40e9-a3d9-bf9bc6235ef8",
 "returnUrl": "http://example.com/redirect/"
 }
 }

N.B The above example assumes that the expiry date fields have been included in the FLEX token.

IMPORT NOTE

The value of “tokenInformation->jti” is the value of the JTI claim in the JWT returned by Flex Microform. See Appendix

A - Extracting JTI from Flex Microform Transient Token for further details.

5.4.3 Request Example 2 - Check Payer Auth Enrollment using Card Details

{
 "clientReferenceInformation": {
 "code": "cybs_test"
 },
 "orderInformation": {
 "amountDetails": {
 "currency": "GBP",
 "totalAmount": "10.99"
 },
 "billTo": {
 "address1": "1 Market St",
 "address2": "Address 2",
 "administrativeArea": "CA",
 "country": "US",
 "locality": "san francisco",
 "firstName": "John",
 "lastName": "Doe",
 "phoneNumber": "4158880000",
 "email": "test@test.com",
 "postalCode": "94105"
 }
 },
 "paymentInformation": {
 "card": {
 "type": "001",
 "expirationMonth": "12",
 "expirationYear": "2025",
 "number": "4111111111111111"
 }
 },
 "consumerAuthenticationInformation": {
 "returnUrl": "https://example.com/",
 "referenceId": "12345678"
 }
}

 M13: Implementing Payer Authentication Direct REST API - 14

Restricted - External

5.4.4 Request Example 3 - Check Payer Auth Enrollment using FLEX token

{
 "clientReferenceInformation": {
 "code": "cybs_test"
 },

 "orderInformation": {
 "amountDetails": {
 "currency": "GBP",
 "totalAmount": "10.99"
 },
 "billTo": {
 "address1": "1 Market St",
 "address2": "Address 2",
 "administrativeArea": "CA",
 "country": "US",
 "locality": "san francisco",
 "firstName": "John",
 "lastName": "Doe",
 "phoneNumber": "4158880000",
 "email": "test@test.com",
 "postalCode": "94105"
 }
 },
 "tokenInformation": {
 "transientToken": "1E4T90Y6Y43QTIH9J0WQMZ6US1YKID1PJZO5S3CYHED43HTAPMUL5FB3EAC147B3"
 },
 "consumerAuthenticationInformation": {
 "returnUrl": "https://example.com/",
 "referenceId": "12345678"
 }
}

N.B The above example assumes that the expiry date fields have been included in the FLEX token.

5.4.5 Key Response fields
The Process a Payment API will return the following key fields:

Field Meaning

status Indicates whether a challenge screen is required. Possible values:
- PENDING_AUTHENTICATION:
A challenge screen is required.
- AUTHORIZED:
- PARTIAL_AUTHORIZED:
- AUTHORIZED_PENDING_REVIEW:
- AUTHORIZED_RISK_DECLINED:
- PENDING_REVIEW:
- DECLINED:
All the above values indicate that a challenge screen was not required and
the authorization request was submitted.
- INVALID_REQUEST:
An error has occurred.

consumerAuthenticationInformation:
stepUpUrl

The fully qualified URL that the merchant uses to post a form to the
cardholder in order to complete the Consumer Authentication transaction
for the Cardinal Cruise API integration.

 M13: Implementing Payer Authentication Direct REST API - 15

Restricted - External

consumerAuthenticationInformation:
accessToken

JSON Web Token (JWT) used to authenticate the consumer with the
authentication provider.
Note - Max Length of this field is 2048 characters.

The Check Payer Auth Enrollment API will return the following key fields:

Field Meaning

status Indicates whether a challenge screen is required. Possible values:
- PENDING_AUTHENTICATION
A challenge screen is required.
- AUTHENTICATION_SUCCESSFUL
The card is enrolled, but no further authentication is required.
- AUTHENTICATION_FAILED
The card is enrolled, but the payer could not be authenticated.-
INVALID_REQUEST
An error has occurred.

consumerAuthenticationInformation:
stepUpUrl

The fully qualified URL that the merchant uses to post a form to the
cardholder in order to complete the Consumer Authentication
transaction for the Cardinal Cruise API integration.

consumerAuthenticationInformation:
accessToken

JSON Web Token (JWT) used to authenticate the consumer with the
authentication provider.
Note - Max Length of this field is 2048 characters.

5.4.6 Reply Example 1 - Process a Payment - Cardholder Enrolled
The following example illustrates the Process a Payment response for a cardholder who IS enrolled in 3DS:

{
 "clientReferenceInformation": {
 "code": "1604405677017"
 },
 "consumerAuthenticationInformation": {
 "acsUrl": "https://0merchantacsstag.cardinalcommerce.com/MerchantACSWeb/creq.jsp",
 "challengeRequired": "N",
 "stepUpUrl": "https://centinelapistag.cardinalcommerce.com/V2/Cruise/StepUp",
 "authenticationTransactionId": "xclgZXLwa6rlLe8fEuS0",
 "pareq": "eyJtZXNzYWdlVHlwZSI6IkNSZXEiLCJtZXNzYWdlVmVyc2lvbiI6IjIuMS4wIiwidGhyZWVEU1NlcnZl
clRyYW5zSUQiOiI5YTZiNWIxMS0zMTQ4LTQ3M2MtYTI3OS03YmM4NWNmNDgwODciLCJhY3NUcmFuc0lEIjoiNjZhYTI3OTctOD
Q4Ny00ZTkwLWIzZmYtMDkyZmJiMzBkZDZiIiwiY2hhbGxlbmdlV2luZG93U2l6ZSI6IjAyIn0",
 "directoryServerTransactionId": "26269f8b-2bbb-4bef-a4ab-ce2a548e75fd",
 "veresEnrolled": "Y",
 "threeDSServerTransactionId": "9a6b5b11-3148-473c-a279-7bc85cf48087",
 "accessToken": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiJjNmNjNjNiMy1kMWM1LTQ2MWUtO
Dk4MS01NTQ1ZDJjMWU2ZWYiLCJpYXQiOjE2MDQ0MDU2OTQsImlzcyI6IjVkZDgzYmYwMGU0MjNkMTQ5OGRjYmFjYSIsImV4cCI
6MTYwNDQwOTI5NCwiT3JnVW5pdElkIjoiNWVlNzVmYThjYTkyMjAwZjdmOGI4MGY0IiwiUGF5bG9hZCI6eyJBQ1NVcmwiOiJod
HRwczovLzBtZXJjaGFudGFjc3N0YWcuY2FyZGluYWxjb21tZXJjZS5jb20vTWVyY2hhbnRBQ1NXZWIvY3JlcS5qc3AiLCJQYXl
sb2FkIjoiZXlKdFpYTnpZV2RsVkhsd1pTSTZJa05TWlhFaUxDSnRaWE56WVdkbFZtVnljMmx2YmlJNklqSXVNUzR3SWl3aWRHa
HlaV1ZFVTFObGNuWmxjbFJ5WVc1elNVUWlPaUk1WVRaaU5XSXhNUzB6TVRRNExUUTNNMk10WVRJM09TMDNZbU00TldObU5EZ3d
PRGNpTENKaFkzTlVjbUZ1YzBsRUlqb2lOalpoWVRJM09UY3RPRFE0TnkwMFpUa3dMV0l6Wm1ZdE1Ea3labUppTXpCa1pEWmlJa
XdpWTJoaGJHeGxibWRsVjJsdVpHOTNVMmw2WlNJNklqQXlJbjAiLCJUcmFuc2FjdGlvbklkIjoieGNsZ1pYTHdhNnJsTGU4ZkV
1UzAifSwiT2JqZWN0aWZ5UGF5bG9hZCI6dHJ1ZSwiUmV0dXJuVXJsIjoiaHR0cDovL2xvY2FsaG9zdDo4MDE4L2N5YnMvM0RTM
kRpcmVjdFJlc3QvcmVkaXJlY3QucGhwIn0.d7whZpLBFhQbfC0C8spxf8Lj-xZLGmM8OBjGPyOsW1w",
 "specificationVersion": "2.1.0",
 "token": "AxjzbwSTR6YjyMUhH1XeAAIBT9s4wzW7OhfzwTRdvSTL0YsQTkwDwAAAiBHJ",
 "acsTransactionId": "66aa2797-8487-4e90-b3ff-092fbb30dd6b"
 },

 M13: Implementing Payer Authentication Direct REST API - 16

Restricted - External

 "errorInformation": {
 "reason": "CONSUMER_AUTHENTICATION_REQUIRED",
 "message": "The cardholder is enrolled in Payer Authentication. Please authenticate the ca
rdholder before continuing with the transaction."
 },
 "id": "6044056945086494103006",
 "status": "PENDING_AUTHENTICATION",
 "submitTimeUtc": "2020-11-03T12:14:55Z"
}

5.4.7 Reply Example 2 - Process a Payment - Cardholder NOT enrolled
The following example illustrates the response for a cardholder who is NOT enrolled in 3DS, where the Authorization

request was approved by the issuer:

{
 "_links": {
 "void": {
 "method": "POST",
 "href": "/pts/v2/payments/6049548642236152503002/voids"
 },
 "self": {
 "method": "GET",
 "href": "/pts/v2/payments/6049548642236152503002"
 }
 },
 "clientReferenceInformation": {
 "code": "MOB12345"
 },
 "consumerAuthenticationInformation": {
 "authenticationTransactionId": "Y2wdSOau0hicHxtGPY00",
 "veresEnrolled": "U",
 "threeDSServerTransactionId": "66d867e6-68db-47a3-8bdf-b459f73fdc7a",
 "ecommerceIndicator": "vbv_failure",
 "directoryServerErrorCode": "101",
 "directoryServerErrorDescription": "Invalid Formatted Message Invalid Formatted Message",
 "specificationVersion": "2.1.0",
 "token": "Axj//wSTR/JaNjs8iVraAAIU3YMWTByxZtHKiOGKtSzwFRHDFWpZ+dCcKCdQyaSZejFiCcmGBOTR/JaN
js8iVraASwly"
 },
 "id": "6049548642236152503002",
 "orderInformation": {
 "amountDetails": {
 "totalAmount": "3.89",
 "authorizedAmount": "3.89",
 "currency": "GBP"
 }
 },
 "paymentAccountInformation": {
 "card": {
 "type": "001"
 }
 },
 "paymentInformation": {
 "tokenizedCard": {
 "type": "001"
 }
 },
 "processorInformation": {

 M13: Implementing Payer Authentication Direct REST API - 17

Restricted - External

 "approvalCode": "3",
 "cardVerification": {
 "resultCodeRaw": "3",
 "resultCode": "2"
 },
 "networkTransactionId": "123456789012345",
 "transactionId": "123456789012345",
 "responseCode": "0",
 "avs": {
 "code": "U",
 "codeRaw": "00"
 }
 },
 "status": "AUTHORIZED",
 "submitTimeUtc": "2020-11-09T20:47:44Z"
 }
}

5.5 STEP 5 - POST to stepUpUrl
If authentication is required (Check Payer Auth Enroll returns status=PENDING_AUTHENTICATION) you must initiate

step-up authentication on your front end. This is done by creating an iframe to send a POST request to the step-up URL.

The iframe manages customer interaction with the card-issuing bank’s Access Control Server (ACS) and 3D Secure

version compatibility for 3D Secure 1.0 and 3D Secure 2.x.

Iframe Parameters

- Form POST Action: The URL posted by the iframe is the stepUpUrl field returned by the Check Payer Auth

Enrollment call.

- JWT POST Parameter: Use the accessToken field returned by the Check Payer Auth Enrollment call.

- MD POST Parameter: This optional merchant-defined data is returned in the response.

Example Code

The example below shows an example iFrame and form.

<iframe name=”step-up-iframe" height="400" width="400" style="display: none;"></iframe>
<form id="step-up-form" target=”step-up-iframe" method="post" action="<<stepUpUrl value>>">
 <input type="hidden" name="JWT" value="<<accessToken value>>" />
 <input type="hidden" name="MD" value="<<optional data returned as is”/>
</form>

Add JavaScript to invoke the iframe form POST. Place the JavaScript after the closing </body> tag (see Example below).

The JavaScript can be used to invoke the iframe form POST automatically when the Check Payer Auth Enrollment

request returns. You may also choose to submit the form at a different time, but you must do it before requesting the

Validate Authentication Results call (STEP 8).

function showStepUpScreen(stepUpURL, jwt){
 document.getElementById('step_up_iframe').style.display="block";
 document.getElementById('step_up_form').action = stepUpURL;
 document.getElementById('step_up_form_jwt_input').value = jwt;

 M13: Implementing Payer Authentication Direct REST API - 18

Restricted - External

 var stepUpForm = document.getElementById('step_up_form');
 if(stepUpForm)submit();
}

5.6 STEP 6 - Receive the Authentication Result
After the customer interacts with the issuing bank, you get the session back through the page specified in the

returnURL field in "Step 4: Check Payer Auth Enrollment". The payload sent to the return URL contains the following

data items:

- TransactionID: (Same value as the authenticationTransactionID field returned by STEP 4 Check Payer Auth

Enrollment). This is used in "STEP 7: Validate Authentication Results."

- MD: merchant data returned if present in the POST to step-up URL. Otherwise, null.

You must devise a mechanism to return the payload values back to your main page. The following example shows a

returnUrl example in PHP and the corresponding function in the main page Javascript:

returnUrl page in iFrame

<!DOCTYPE html>
<html>
<head>1
</head>
<body>
<script type="text/javascript">
 var result = <?php echo $_POST[‘TransactionId’]; ?>;
 function closeMe() {
 parent.hideStepUpScreen(result);
 }
 closeMe();
</script>
</body>
</html>

Main Page JavaScript

function hideStepUpScreen(transactionId) {
 // Hide the iFrame
 ...
 // Call Validate Authentication Results with transactionId
 ...
}

5.7 STEP 7 - Validate Authentication Results + Authorization API request
To check whether the cardholder authenticated successfully, you must submit a Validate Authentication Results API

call OR submit a Process a Payment request and include a Payer Auth Validation check

(VALIDATE_CONSUMER_AUTHENTICATION) in the same call. The latter approach is recommended in almost all

circumstances, unless there is a specific reason to separate the Payer Authentication flow from the payment flow.

With the combined call, if the cardholder DID successfully authenticate, then the authorization request is run and

 M13: Implementing Payer Authentication Direct REST API - 19

Restricted - External

automatically populated with the correct parameters. If the authentication failed, then the Authorization request will

NOT be run and you can ask your customer try again.

5.7.1 Key Request fields

It is recommended to include as much data as possible in your request, as this will increase the chance that the Issuer

will not require a challenge screen. See the Developer Center for comprehensive request and response details:

 Process a Payment:

o https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-

payment

 Check Payer Auth Enrollment:

o https://developer.cybersource.com/api-reference-assets/index.html?stage=pilot#payer-

authentication_payer-authentication_validate-authentication-results

The following request fields are mandatory:

 consumerAuthenticationInformation:

o authenticationTransactionId: The TransactionId value returned in STEP 6.

The following items are only required for the Process a Payment API:

 processingInformation:

o actionList: the static value “VALIDATE_CONSUMER_AUTHENTICATION”

 Payment card details: FLEX transient token, TMS token or card details.

5.7.2 Request Example 1 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION using

FLEX token

{
 "processingInformation": {
 "actionList": [
 "VALIDATE_CONSUMER_AUTHENTICATION"
]
 },
 "orderInformation": {
 "amountDetails": {
 "totalAmount": "3.89",
 "currency": "GBP"
 },
 "billTo": {
 "firstName": "Pauline",
 "lastName": "Evo",
 "address1": "Little House",
 "locality": "Ontheprairie",
 "postalCode": "LH1 OTP",
 "country": "GB",
 "email": "pauline@test.com"
 }
 },
 "tokenInformation": {
 "jti": "1E66U6G8RAEMDQ8GH0JI9L0L6FIFS2KO5LY8T5AI52OV4A37PKZP5FAE7B642B88"
 },
 "clientReferenceInformation": {

https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment
https://developer.cybersource.com/api-reference-assets/index.html?stage=pilot#payer-authentication_payer-authentication_validate-authentication-results
https://developer.cybersource.com/api-reference-assets/index.html?stage=pilot#payer-authentication_payer-authentication_validate-authentication-results

 M13: Implementing Payer Authentication Direct REST API - 20

Restricted - External

 "code": "MOB12345"
 },
 "consumerAuthenticationInformation": {
 "authenticationTransactionId": "DSOxJS5lGIRYE4exZhy0"
 }
}

N.B The above example assumes that the expiry date fields have been included in the FLEX token.

IMPORT NOTE

The value of “tokenInformation->jti” is the value of the JTI claim in the JWT returned by Flex Microform. See Appendix

A - Extracting JTI from Flex Microform Transient Token for further details.

5.7.3 Request Example 2 - Validate Authentication Results

{
 "clientReferenceInformation": {
 "code": "pavalidatecheck"
 },
 "consumerAuthenticationInformation": {
 "authenticationTransactionId": "DSOxJS5lGIRYE4exZhy0"
 }
}

5.7.4 Key Response fields
The Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION API will return the following key fields:

Field Meaning

status Indicates status of the transaction. Possible values:
- AUTHORIZED:
- PARTIAL_AUTHORIZED:
- AUTHORIZED_PENDING_REVIEW:
- AUTHORIZED_RISK_DECLINED:
- PENDING_REVIEW:

All the above values indicate that the authentication was successful and
the authorization request was submitted.
- DECLINED:
Either the authentication failed or the authorization request was declined
(e.g. insufficient funds). You can examine
consumerAuthenticationInformation:authenticationResult to see whether
the authentication was successful.
- INVALID_REQUEST:
An error has occurred.

consumerAuthenticationInformation:
authenticationResult

Raw authentication data that comes from the card-issuing bank. Primary
authentication field that indicates if authentication was successful and if
liability shift occurred. Possible values:

 -1: Invalid PARes.
- 0: Successful validation.
- 1: Cardholder is not participating, but the attempt to authenticate was
recorded.

 M13: Implementing Payer Authentication Direct REST API - 21

Restricted - External

Field Meaning

- 6: Issuer unable to perform authentication.
- 9: Cardholder did not complete authentication.

The Validate Authentication Results API will return the following key fields:

Field Meaning

status Indicates whether authentication was successful. Possible values:
- AUTHENTICATION_SUCCESSFUL
Authentication was successful.
- AUTHENTICATION_FAILED
Authentication failed.
- INVALID_REQUEST
An error has occurred.

consumerAuthenticationInformation:
authenticationResult

Raw authentication data that comes from the card-issuing bank.
Primary authentication field that indicates if authentication was
successful and if liability shift occurred. Possible values:

-1: Invalid PARes.
0: Successful validation.
1: Cardholder is not participating, but the attempt to authenticate was
recorded.
6: Issuer unable to perform authentication.
9: Cardholder did not complete authentication.

5.7.5 Reply Example 1 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION

The following example illustrates the Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION response where

the cardholder successfully authenticated and the Authorization was approved:

{
 "_links": {
 "void": {
 "method": "POST",
 "href": "/pts/v2/payments/6052697807316824104005/voids"
 },
 "self": {
 "method": "GET",
 "href": "/pts/v2/payments/6052697807316824104005"
 }
 },
 "clientReferenceInformation": {
 "code": "MOB12345"
 },
 "consumerAuthenticationInformation": {
 "indicator": "vbv",
 "eciRaw": "05",
 "cavv": "AAABAWFlmQAAAABjRWWZEEFgFz+=",
 "paresStatus": "Y",
 "authenticationResult": "0",
 "xid": "RFNPeEpTNWxHSVJZRTRleFpoeTA=",
 "cavvAlgorithm": "2",
 "authenticationStatusMsg": "Success",
 "eci": "05",
 "specificationVersion": "1.0.2",

 M13: Implementing Payer Authentication Direct REST API - 22

Restricted - External

 "token": "Axj//wSTSB4OSy/xCBxFAAIU3YMWTFu3csHCiOGQuQ6gFRHDIXIdWdCcKCfQyaSZejFiCcmGAaTSB4OS
y/xCBxFAtmW6"
 },
 "id": "6052697807316824104005",
 "orderInformation": {
 "amountDetails": {
 "totalAmount": "3.89",
 "authorizedAmount": "3.89",
 "currency": "GBP"
 }
 },
 "paymentAccountInformation": {
 "card": {
 "type": "001"
 }
 },
 "paymentInformation": {
 "tokenizedCard": {
 "type": "001"
 },
 "scheme": "VISA DEBIT",
 "bin": "400000",
 "accountType": "Visa Classic",
 "issuer": "JPMORGAN CHASE BANK",
 "binCountry": "US"
 },
 "processorInformation": {
 "approvalCode": "3",
 "cardVerification": {
 "resultCodeRaw": "3",
 "resultCode": "2"
 },
 "networkTransactionId": "123456789012345",
 "transactionId": "123456789012345",
 "responseCode": "0",
 "avs": {
 "code": "U",
 "codeRaw": "00"
 }
 },
 "status": "AUTHORIZED",
 "submitTimeUtc": "2020-11-13T12:16:21Z"
}

5.7.6 Reply Example 2 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION
The following example illustrates the Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION response where

the cardholder successfully authenticated but the Authorization was declined by the issuer:

{
 "_links": {
 "self": {
 "method": "GET",
 "href": "/pts/v2/payments/6052823560456722904001"
 }
 },
 "clientReferenceInformation": {
 "code": "MOB12345"
 },

 M13: Implementing Payer Authentication Direct REST API - 23

Restricted - External

 "consumerAuthenticationInformation": {
 "indicator": "vbv",
 "eciRaw": "05",
 "cavv": "AAABAWFlmQAAAABjRWWZEEFgFz+=",
 "paresStatus": "Y",
 "authenticationResult": "0",
 "xid": "R1hGVFpYdklTazMycEhLT25XVDA=",
 "cavvAlgorithm": "2",
 "authenticationStatusMsg": "Success",
 "eci": "05",
 "specificationVersion": "1.0.2",
 "token": "Axj77wSTSB/NDwByFvPBAAJRHDIfOpACojhkPnUjOiXorAJ8mXpJl6MWIJyYA0mkD+aHgDkLeeCAFDoL
"
 },
 "errorInformation": {
 "reason": "PROCESSOR_DECLINED",
 "message": "Decline - General decline of the card. No other information provided by the is
suing bank."
 },
 "id": "6052823560456722904001",
 "processorInformation": {
 "cardVerification": {
 "resultCodeRaw": "3",
 "resultCode": "2"
 },
 "responseCode": "5",
 "avs": {
 "code": "U",
 "codeRaw": "00"
 }
 } ,
 "status": "DECLINED",
 "submitTimeUtc": "2020-11-13T15:45:56Z"
}

5.7.7 Reply Example 3 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION
The following example illustrates the Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION response where

the cardholder failed to authenticate, and so the Authorization request was not run:

{
 "clientReferenceInformation": {
 "code": "MOB12345"
 },
 "consumerAuthenticationInformation": {
 "eciRaw": "07",
 "paresStatus": "N",
 "authenticationResult": "9",
 "xid": "TkhuekdnZlBKaUtscTNLV2pUVTA=",
 "authenticationStatusMsg": "User failed authentication",
 "specificationVersion": "1.0.2",
 "token": "AxjzbwSTSB/cuYllBK4GAAIBURwyH1PZnQycQE+Xc0ky9GLEE5MA4AAADQw+"
 },
 "errorInformation": {
 "reason": "CONSUMER_AUTHENTICATION_FAILED",
 "message": "Encountered a Payer Authentication problem. Payer could not be authenticated."
 },
 "id": "6052827970086541504006",
 "status": "DECLINED",

 M13: Implementing Payer Authentication Direct REST API - 24

Restricted - External

 "submitTimeUtc": "2020-11-13T15:53:19Z"
}

5.7.8 Reply Example 4 - Validate Authentication Results - Successful Authentication
The following example illustrates the Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION response where

the cardholder failed to authenticate, and so the Authorization request was not run:

{
 "clientReferenceInformation": {
 "code": "pavalidatecheck"
 },
 "consumerAuthenticationInformation": {
 "indicator": "vbv",
 "eciRaw": "05",
 "cavv": "AAABAWFlmQAAAABjRWWZEEFgFz+=",
 "paresStatus": "Y",
 "authenticationResult": "0",
 "xid": "dUtORVFvemJWb09yNmVvOVc5eTA=",
 "cavvAlgorithm": "2",
 "authenticationStatusMsg": "Success",
 "eci": "05",
 "specificationVersion": "1.0.2",
 "token": "AxijLwSTSCAgLVlInEDCAAJRHDIf/WIAE+hk0ky9GLEE5MAA6wmh"
 },
 "id": "6052846956246694904002",
 "status": "AUTHENTICATION_SUCCESSFUL",
 "submitTimeUtc": "2020-11-13T16:24:55Z"
}

Restricted - External

6 Flex Microform with Payer Authentication

To avoid exposure to card payment details on the merchant server and the additional PCI DSS implications
that go with it, it is highly recommended to use the Flex Microform 0.11 to capture the payment details. This
frontend integration method returns a token that can be used in place of the card details in all of the APIs used
for Payer Authentication. The Microform consists of two hosted fields that can be embedded on the merchant
payment page to capture the card number and the CVN. You have full control over the styling of the fields but
no access to the card number and CVN entered. The masked PAN and the token are accessible by JavaScript
on the page. Full details of how to use the Flex Microform is documented in a separate document: M07: FLEX
Microform Integration.pdf.

7 Payer Authentication Testing

To test different Payer Authentication scenarios Smartpay Fuse has a set of test PANs, for Visa, MasterCard
and Amex, which trigger different responses from the Payer Authentication platform.

For test PANs please refer to a separate document: “M05 Test Cases.pdf”

As an expiry month for your test transactions, please select always December, for the expiry year – current
year + 2. If you are asked to provide a Payer Authentication password, please use “1234”.

8 Generating a REST API key

You will need to create a REST Shared Secret security key to be able to make the server-side REST API calls used for

Payer Authentication. The following steps show you how this is done:

1) Log into EBC, select Payment Configuration -> Key Management, Select Keys: API Keys and click on GENERATE

KEY button.

2) The Create Key window appears. Select API Cert / Secret and click NEXT STEP.

 Barclays

26

Restricted - External

 Barclays

27

Restricted - External

3) In the next menu select Shared Secret and then SUBMIT.

4) In the next window copy or download the Shared secret key, which is the first credential for REST API request,

and click on KEY MANAGEMENT.

 Barclays

28

Restricted - External

5) In Key Management window select Keys: API Keys option to find newly created key.

6) Click on the link in the Keys column to see the key details and copy Key Detail parameter, which is the second

credential for REST API request.

You now have the two credentials required for the REST API authentication process:

- Key detail (key id)

- Shared secret key

 Barclays

29

Restricted - External

Appendix A - Extracting JTI from Flex Microform Transient Token

Flex Microform will return a transient token in the form of a JWT. E.g.

eyJraWQiOiIwOE1aMGJNZzBZVzcxQ1UxNjBBYTRhS2pCUWRPQXFvViIsImFsZyI6IlJTMjU2In0.eyJkYXRhIjp7ImV4cGlyYX
Rpb25ZZWFyIjoiMjAyMSIsIm51bWJlciI6IjQxMTExMVhYWFhYWDExMTEiLCJleHBpcmF0aW9uTW9udGgiOiIxMiIsInR5cGUi
OiIwMDEifSwiaXNzIjoiRmxleC8wOCIsImV4cCI6MTYxMDM2NDUzMSwidHlwZSI6Im1mLTAuMTEuMCIsImlhdCI6MTYxMDM2Mz
YzMSwianRpIjoiMUU0VkJMQjdIVlEyMVY2VVVUT1Y3NllZNVRHUTJJQUU5RTRHS1NXUERCNDgxOTEyQ0wyUDVGRkMzNjczMzY5
RCJ9.hLPTwEfocxwn-P2TRkRmMKSLu5bg3pQJixmycwSG0Nu9vM1z35J7vVT_nIh4vDZGhKoWkLvjZP-_Hjjp6JSwOISoso2LX
uiWadtp4rsxVT7cDK-Gw9ZghUCNwD4lf2GiUxFxfQgU9FJQH1aKSXQ76yj2y63mW--OfdpaQBfSCy6k2ndjPdZSE8NKhjxGzZg
25n6tlGSrfxm7RSDI_Vj6kMLgxSbAugi84ZKDF-GqDuBcWZjRoeRxs4iRu2ljt4HISeCMA0iieLm3tpbjVN7REFcVJFxyM7CGD
ncfUX7582I6edusOR6ziKY3Zz8xEfQ6gQdFbCmnTctrXiqaYZ5WQA

When BASE 64 decoded, the JWT will have the following format:

Header:

{
 "kid": "08MZ0bMg0YW71CU160Aa4aKjBQdOAqoV",
 "alg": "RS256"
}

Payload:

{
 "data": {
 "expirationYear": "2021",
 "number": "411111XXXXXX1111",
 "expirationMonth": "12",
 "type": "001"
 },
 "iss": "Flex/08",
 "exp": 1610364531,
 "type": "mf-0.11.0",
 "iat": 1610363631,
 "jti": "1E4VBLB7HVQ21V6UUTOV76YY5TGQ2IAE9E4GKSWPDB481912CL2P5FFC3673369D"
}

The “jti” value is the value to be used in the tokenInformation->transientToken field in the Setup Payer Authentication

API, and in the tokenInformation->jti field in the Process A Payment API.

Disclaimer

Barclays and Barclaycard offers corporate banking products and services to its clients through Barclays Bank PLC. This

presentation has been prepared by Barclays Bank PLC ("Barclays"). This presentation is for discussion purposes only,

and shall not constitute any offer to sell or the solicitation of any offer to buy any security, provide any underwriting

commitment, or make any offer of financing on the part of Barclays, nor is it intended to give rise to any legal

relationship between Barclays and you or any other person, nor is it a recommendation to buy any securities or enter

into any transaction or financing. Customers must consult their own regulatory, legal, tax, accounting and other

advisers prior to making a determination as to whether to purchase any product, enter into any transaction of financing

 Barclays

30

Restricted - External

or invest in any securities to which this presentation relates. Any pricing in this presentation is indicative. Although the

statements of fact in this presentation have been obtained from and are based upon sources that Barclays believes to

be reliable, Barclays does not guarantee their accuracy or completeness. All opinions and estimates included in this

presentation constitute Barclays’ judgement as of the date of this presentation and are subject to change without

notice. Any modelling or back testing data contained in this presentation is not intended to be a statement as to future

performance. Past performance is no guarantee of future returns. No representation is made by Barclays as to the

reasonableness of the assumptions made within or the accuracy or completeness of any models contained herein.

Neither Barclays, nor any officer or employee thereof, accepts any liability whatsoever for any direct or consequential

losses arising from any use of this presentation or the information contained herein, or out of the use of or reliance on

any information or data set out herein.

Barclays and its respective officers, directors, partners and employees, including persons involved in the preparation or

issuance of this presentation, may from time to time act as manager, co-manager or underwriter of a public offering or

otherwise deal in, hold or act as market-makers or advisers, brokers or commercial and/or investment bankers in

relation to any securities or related derivatives which are identical or similar to any securities or derivatives referred to

in this presentation.

Copyright in this presentation is owned by Barclays (© Barclays Bank PLC, 2012). No part of this presentation may be

reproduced in any manner without the prior written permission of Barclays.

Barclays Bank PLC is a member of the London Stock Exchange.

Barclays is a trading name of Barclays Bank PLC and its subsidiaries. Barclays Bank PLC is registered in England and

authorised and regulated by the Financial Services Authority (FSA No. 122702). Registered Number is 1026167 and its

registered office 1 Churchill Place, London E14 5HP.

Barclaycard is a trading name of Barclays Bank PLC and Barclaycard International Payments Limited. Barclays Bank PLC

is authorised by the Prudential Regulation Authority and regulated by the Financial Conduct Authority and the

Prudential Regulation Authority (Financial Services Register number: 122702). Registered in England No. 1026167.

Registered Office: 1 Churchill Place, London E14 5HP. Barclaycard International Payments Limited, trading as

Barclaycard, is regulated by the Central Bank of Ireland. Registered Number: 316541. Registered Office: One

Molesworth Street, Dublin 2, Ireland, D02 RF29. Directors: Paul Adams (British), James Kelly, Mary Lambkin Coyle and

Michael Reed (USA). Calls may be recorded for security and other purposes.

