g barclaycard

M13: Implementing Payer
Authentication Direct REST API

Version 1.1
Date January 2021

Restricted - External

1 Version Control

Revision Date Description
1.0 November Initial release
’ 2020
1.1 Jan 2020 | Clarified use of Flex Microform transient token.

M13: Implementing Payer Authentication Direct REST API - 2

Restricted - External

2 Table of Contents

M13: Implementing Payer Authentication DIireCt REST APIocuieiiiieieeiese e etes e ete et e teeste e e e s e e e este s s esseessesssessaensens 1

1 VEISION CONTIOL ..ttt ettt ettt et e a e a et e st et et e a e e a e e st et e st e st et et et e s et et eneeneennens 2

2 TADIE OF CONTENTS ..ttt ettt ettt ettt et et e st et et et et et et e e ennens 3

3 INEFOTUCTION ettt sttt bbb b et e st b et s b e e s b e e e st b e e b e e s e e eneeenenee 5

4 Payer Authentication 3DS 2.X OVEIVIEWcceeereririririieiteiteitetet ettt ettt ettt ettt et ettt e ae et e e een 6
4.1 PrEIEQUISITES ...ttt r e b st e b b e e a e e b e s b e s h e e bbb e s ae s b e e an e bt b e s anens 6
4.2 L YT =L PP 6
A.2. 1 HiBH IEVEI SEEPS ..ttt ettt ettt et ettt et e et et e et et et et et et et et e et e e s 7

5 Payer Authentication 3DS 2.X Detailed StEPScoeviririririreetetee ettt ettt 9
5.1 STEP 1 - Setup Payer AULH APl REQUESTcc.eeciieiectietecteeteeete et et e e et e et e s teete s e e s seesbessaesssessesssesaessesssenseessesssenssensans 9
5.1 KEY REQUEST FIEIAS ...ttt sttt ettt et ettt et e s et e st e st et e st e st et e e et et e e enes 9
5.1.2 Request Example 1 - Setup Payer Auth Service using FLEX tOKENcocoeeriririninireeeee e 9
5.1.3 Request Example 2 - Setup Payer Auth Service using card detailsc.ccvevueevieeieieeciecceceee e 9
5.1.4 Request Example 3 - Setup Payer Auth Service using TMS tOKENcccceeririririnineeee s 9
5.1.5 KEY RESPONSE fIBIAS ..ottt ettt ettt ettt ettt et ettt e e et 10
5.1.6 Reply EXample 1 - SETUP PAYEI AULNcoecuieeeeeceeeeee ettt ettt e e e este e be e e e s saeabeebesanebaensanns 10
5.2 STEP 2 - DeVice Data COllECIONciiieiiiieiicec ettt 10
5.3 STEP 3 - Add @VENT LISTENE ...ttt ettt 11
5.4 STEP 4 - Check Payer Auth Enrollment + Authorization APl reqUESt........cocveeeieeiiecieccece e 11
5,41 KEY REQUEST FIEIUS ...uiuieiicieeee ettt ettt e et et e e et este e beetbeebeesbaessesssessaessasssensasssasssensesssanssansannsanes 12
5.4.2 Request Example 1 - Process a Payment + CONSUMER_AUTHENTICATION using FLEX tokenccccceeuenn. 12
5.4.3 Request Example 2 - Check Payer Auth Enrollment using Card Details........c.cccoveeieevieeiieciiiceecieeeeeieee 13
5.4.4 Request Example 3 - Check Payer Auth Enrollment using FLEX tOKencccveeieeeiiiiieciee e 14
5.4.5 KEY RESPONSE FIEIAS ..veeeeiiiceiicteeieeteseee ettt ettt et e et e sttt e et e s re e e e e seesaeesseesaesseensesssesseenseeseansnensasnsanns 14
5.4.6 Reply Example 1 - Process a Payment - Cardholder Enrolled.........ccooueeieeiiecieeeeeeeeece e 15
5.4.7 Reply Example 2 - Process a Payment - Cardholder NOT enrolledccveeiiieieecieccieeceeceeee e 16
5.5 oY L T o @ R I o TR =T o1 U o1 o SRS 17
5.6 STEP 6 - Receive the Authentication RESUITcoeiiiiiiiieieiee e 18
5.7 STEP 7 - Validate Authentication Results + Authorization APl reqUESteecieeiieeiieecieece e 18
5.7.1 KEY REQUEST FIEIUS ...ueeieeieieeeeeeee ettt ettt e st e st et e et e st e e e st e s se et e eseesseesseesaesseesseessesseenseessensnensannsanns 19
5.7.2 Request Example 1 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION using FLEX token... 19

5.7.3

Request Example 2 - Validate Authentication RESUILScc..eouiieiieeiieeeeeeeeeeeeee e 20

M13: Implementing Payer Authentication Direct REST API - 3

Restricted - External

5.7.4 KeY RESPONSE fIIAS ..eeviiiiiiieiieieeteeteeteet ettt et ettt ettt ettt e e e e
5.7.5 Reply Example 1 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATIONcccoervveveevrerrerreeienns
5.7.6 Reply Example 2 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATIONcccoeevveveevereerreerenne
5.7.7 Reply Example 3 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATIONcovvervvemreeereenrrennens
5.7.8 Reply Example 4 - Validate Authentication Results - Successful Authentication.........ccccceevveeeeveececceeceenenne
6 Flex Microform with Payer AUthenTtiCationccceieiieieeececeeee ettt s a e re et e s s e e e beenne e 25
7 Payer AUtheNntiCation TESTINGccccceriiiiirieeeete ettt ettt ettt ettt ettt 25
8 GENEFAtING @ REST APIKBY ...uvetieieeieettete ettt ete et e st e te et e st e te st e s te et e e ssessaesseessessaessesssessaessesssaseassesssenssessesssensaansens 25
Appendix A - Extracting JTI from Flex Microform Transient TOKEN......cc.eccveeieeieieeeceee ettt 29
1ol - 110 =T TSRS 29

M13: Implementing Payer Authentication Direct REST API - 4

Restricted - External

3 Introduction

This document describes in detail how to implement Direct Payer Authentication, to support 3D Secure 2.x for card
payment transactions on both mobile and website channels.

The Direct Connection API Payer Authentication workflow is an alternative to the Hybrid integration. It does NOT
require the use of Cardinal Commerce’s Songbird JavaScript library (and any other 3™ party libraries). Also, unlike the
Hybrid model, it does not require knowledge of the Cardinal Commerce Payer Auth credentials. The Direct APl can be
used with the SOAP Toolkit APl service or REST API for the backend services, but for new integrations, REST is
recommended. This document will concentrate on REST.

In 1999 3D-Secure 1.0 (Payer Authentication service) was introduced to help prevent fraud for online purchases. The
following card schemes support 3DS 1.0:

- Visa Verified by Visa,

- MasterCard and Maestro SecureCode,
- American Express SafeKey,

- JCBJ/Secure,

- Diners Club ProtectBuy,

- Discover ProtectBuy.

Payer Authentication (PA) provides an additional level of security for online payments, whereby cardholders who are
enrolled into PA provide a password to complete online transactions.

In 2020 3D-Secure 2.x is being rolled out. 3DS 2.x eliminates all the disadvantages of the 3DS 1.0. It collects ten times
more data during the process, allowing the issuer to better determine if the customer is risky or not. It provides much
better customer experience for mobile device users, and makes the whole PA process more flexible.

M13: Implementing Payer Authentication Direct REST API - 5

Restricted - External

4 Payer Authentication 3DS 2.x Overview

4.1 Prerequisites

Before you start running 3DS 2.x transactions in Test or in Live environment, four initial requirements must be fulfilled:

1) Your Smartpay Fuse MID must be configured specifically for 3DS 2.x.
2) Your Smartpay Fuse MID must be setup with three credentials, provided by Cardinal Commerce. These will be
visible in the Enterprise Business Center when set up.
IMPORTANT - Although not required in your integration, these credentials must be present for 3DS Direct to
work correctly.
API Identifier A non-secure value that should be passed within the JWT = 5b30e68e6fe3d126b4037b02
under the iss claim.

Org Unit Id A non-secure value that should be passed within the JWT | 5b2d8dacff626b051ch9f891
under the OrgUnitld claim.
API Key A secure value that should never be rendered or 2725b3a8-af13-4e5b-ba77-

displayed anywhere within a browser/mobile app. This ¢593a1207996
value must only ever be stored on the merchant server.

The API Key is used to sign the JWT initialize the

connection to Cardinal Commerce, and to verify the JWT

signature received back from Cardinal. It must never be

included within the JWT itself.

Contact the Support team to ensure that the gateway MID is configured for 3DS2 and the above credentials are in
place.

3) You must have set up a REST security Key for your Transacting Gateway MID. See Section 8. Generating a REST
API key for details.
4) You customer browser version must be higher than in the table below:

Desktop IE 10+

Edge 13+

Firefox 42+

Chrome 48+

Safari 7.1+

Mobile iOS Safari 7.1+
Android Browser 4.4+
Chrome Mobile 48+

4.2 Overview
The following diagram gives a high-level view of the workflow, involved in the Direct APl integration. Detailed
descriptions of each step follow later in this document.

M13: Implementing Payer Authentication Direct REST API - 6

Restricted - External

Setup Payer Auth API Call 1
Legend

Server-side APl Call

¥ B Javascript function
Device Data Collection

¥

|

¥

3
4
Authorization + Check Payer Auth
Enrollment API Call
v
N POST to stepUpUrl in Iframe.
Authentication 15 S
ired?
required: Cardholder authenticates to Issuer
No
Control returned to specified
merchant page
L4 8
CNAR AN VAT
Display result to Customer ” Authorization + Validate

Authentication Results API Call

Figure 1 - High-level Workflow"

4.2.1 High level steps
Step Description

1 Setup Payer Auth API call
Call out to server-side to generate Setup Payer Auth API call with Card details/Transient
Token. This call returns a deviceCollectionUrl and an accessToken JWT, which are
required for Device Data collection.

2 Device Data Collection
“Silently” POST the accessToken JWT to the deviceCollectionUrl returned by Setup Payer
Auth (STEP 1)
An event will be triggered when device collection is complete.

M13: Implementing Payer Authentication Direct REST API - 7

Restricted - External

Add Event Listener
Add a function to handle the device-collection complete event.

profile.complete event

A sessionID will be returned in the event payload, which is then used in the Check Payer
Auth Enrollment API.

Check Payer Auth Enrolment + Optional Authorization API Call

Call the Check Payer Auth Enrollment APl to check whether the cardholder is enrolled into
3DsS.

Supply sessionlD in the consumerAuthenticationinformation:referenceld field and
specify consumerAuthenticationinformation:returnUrl to redirect the cardholder to in
the event that authentication window is required.

It is recommended to perform an authorization request in the same call. If the cardholder
is NOT enrolled then the Authorization request will be processed, and the system will
populate the request with the correct values to indicate that 3DS was attempted. If the
cardholder IS enrolled and authentication is required then the Authorization request will
be ignored.

If authentication is required, then stepUpUrl and accessToken JWT will be returned.
POST to stepUpUrl

POST the accessToken JWT to the stepUpUrl returned by Payer Auth Enrolment.
Typically, this would be in an Iframe.

The cardholder authenticates to the Issuer in a 3DS window, although in some cases this
is not required.

Redirect to return Url

The browser/Iframe is redirected to the returnUrl specified in the Payer Auth Enrolment
check. authenticationTransactionld will be returned in the payload, and is used in the
next step.

Validate Authentication Results + Optional Authorization API Call

Call the Payer Auth Validate Service to retrieve various fields required in the Authorization
request to indicate that 3DS was attempted and successful.

Supply authenticationTransactionld in the consumerAuthenticationinformation:
authenticationTransactionld field.

It is recommended to perform an Authorization request in the same call, as the system
will populate the Authorization request with the correct values from the Validation
request. For this reason you must supply full order/billing details, as well as cards details,
a FLEX transient token or TMS permanent token.

Display result to Cardholder

M13: Implementing Payer Authentication Direct REST API - 8

Restricted - External

5 Payer Authentication 3DS 2.x Detailed Steps

5.1 STEP 1 - Setup Payer Auth APl Request

The Payer Authentication Setup service is called on the server side after the customer has entered their card details.
Typically, you would use FLEX Microform to capture the card details, or you may have previously captured card details
stored in a TMS token, but you can also supply “actual” card details. The Payer Authentication Setup service must be
called on its own without including other Smartpay Fuse services.

5.1.1 Key Request Fields

See the Developer Center for comprehensive request and response details: https://developer.cybersource.com/api-

reference-assets/index.html#payer-authentication payer-authentication setup-payer-auth

5.1.2 Request Example 1 - Setup Payer Auth Service using FLEX token

{
"clientReferenceInformation": {
"code": "cybs_test"
¥
"tokenInformation": {
"transientToken": "1E3HQL26RVIPQBPF6ELASS2FRI51A7F3KABU79H26NEE7C1Q3K3C5F993DF1042F "
}
}

N.B The above example assumes that the expiry date fields have been included in the FLEX token.
IMPORT NOTE

The value of “tokeninformation->transientToken” is the value of the JTI claim in the JWT returned by Flex Microform.
See Appendix A - Extracting JTI from Flex Microform Transient Token for further details.

5.1.3 Request Example 2 - Setup Payer Auth Service using card details
{

"clientReferenceInformation": {
"code": "cybs_test"
s
"paymentInformation”: {
"card": {
"type": "@01",
"expirationMonth": "12",
"expirationYear": "2020",
"number": "400000xxxxxx0002"

5.1.4 Request Example 3 - Setup Payer Auth Service using TMS token
{

"clientReferenceInformation": {
"code": "cybs_test"

¥
"paymentInformation”: {
"customer": {

M13: Implementing Payer Authentication Direct REST API -9

Restricted - External

https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication_payer-authentication_setup-payer-auth
https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication_payer-authentication_setup-payer-auth

"id": "B103500B4BE49012E05341588EQA7655"

5.1.5 Key Response fields
The Setup Payer Auth APl will return the following key fields:

Indicates status of the call. Possible values:
COMPLETED: the call was successful.

status FAILED: an error occurred.

JSON Web Token (JWT) used to authenticate the consumer with the
consumerAuthenticationinformation: authentication provider.
accessToken Required for next step - Device Data Collection.

The deviceDataCollectionUrl is the location to send the
consumerAuthenticationinformation: Authentication JWT when invoking the Device Data collection process.
deviceDataCollectionUrl Required for next step - Device Data Collection.
consumerAuthenticationinformation: This identifier represents the device data collection session.
referenceld Required for subsequent step - Payer Auth Enrollment Check.

5.1.6 Reply Example 1 - Setup Payer Auth

The following example illustrates the Setup Payer Auth REST response:

"consumerAuthenticationInformation": {

"accessToken": "eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyJlqdGkiOiIwNTAZMWYONSO2NJE2LTRjYZzYtO
DAyZi1iNTRkZTg3MWNkMDkilLCIpYXQi0jE2MDQzMjczNDUsImlzcyI6IjVkZDgzYmYwMGUOMINKMTQ50GRIYMFjYSISImVAcCT
6MTYWNDMzMDkONSWiT3InVW5pdE1KIjoiNWVINZVmMYThjYTkyMjAWZ jdmOGI4AMGYOIiwiUmVmZXJI1bmN1SWQi0iI4ZjEyYTI4M
iOXODM1LTRiYTYtOWUwYilhZDAXYJUINT1YTYifQ.W4ADdw2x77-Kf1xMoQebIFWT8AOGYj7hoWuFRroLOHo",

"deviceDataCollectionUrl": "https://centinelapistag.cardinalcommerce.com/V1/Cruise/Collect

n
3

"referenceld": "8f12a282-1835-4ba6-9e@b-ad@1b5559ca6",
"token": "AxizbwSTR5tEP2ZV1YH7AAIBURwwcdgeABMAZNIMVRixBOTATAAAUANa"

¥
"id": "6043273449186077803003",

"status": "COMPLETED",
"submitTimeUtc": "2020-11-02T14:29:05Z"

5.2 STEP 2 - Device Data Collection

Device Data Collection is initiated on the front end after you receive the Setup Payer Auth reply as described above. A
hidden 1x1pixel iframe is rendered to the browser in order to profile the customer device. The response depends on
the card-issuing bank and can take 3 to 5 seconds. If you proceed with the Check Payer Auth Enrollment service (see
next step) before a response is received, Smartpay Fuse will fall back to 3D Secure 1.0.

Initiate a form POST in a hidden iframe and send the accessToken JWT to the deviceDataCollectionUrl URL returned by
Setup Payer Auth:

<iframe name="ddc-iframe” height="1" width="1" style="display: none;">

IViLsormpiementung rdyer Autlnentucauon vireCt ReEST AFIL - LU

Restricted - External

</iframe>

<form id="ddc-form" target="ddc-iframe” method="POST" action="<<deviceDataCollectionUrl>>">
<input type="hidden" name="JWT" value="<<accessToken>>" />

</form>

You can add JavaScript to invoke the iframe form POST automatically when the window loads - if you already have the

response from Setup Payer Auth. Place the following JavaScript after the closing </body> element:

<script>

window.onload = function() {

var ddcForm = document.querySelector('#ddc-form');
if(ddcForm) // ddc form exists

ddcForm.submit();

}

</script>

You may also choose to submit the form at a different time, but you must do it before requesting the Check Payer Auth
Enroliment.

5.3 STEP 3 - Add event Listener

After device data collection has completed, an event will be generated. You will need to trap this event. The Example
below shows how to subscribe to the event and add JavaScript to receive the response from the device data collection
iframe. Place the JavaScript after the closing </body> element.

Note that the event.origin URL is variable depending on your environment:
- Test: https://centinelapistag.cardinalcommerce.com

- Production: https://centinelapi.cardinalcommerce.com

<script>
window.addEventListener("message", (event) => {
// {MessageType: "profile.completed", Session Id: "@_57f063fd-659a-
// 4779-b45b-9e456fdb7935", Status: true}
if (event.origin === "https://centinelapistag.cardinalcommerce.com") {
let data = JSON.parse(event.data);
console.log('Merchant received a message:', data);

if (data !== undefined && data.Status) {
console.log('Songbird ran DF successfully');

}
}, false);
</script>

N.B. There is no requirement to retain any of the data items received in the event payload, however data.Sessionld will
be the same value as consumerAuthenticationinformation:referenceld returned by Setup Payer Auth.

5.4 STEP 4 - Check Payer Auth Enrollment + Authorization APl request

To check whether the cardholder is enrolled in 3DS, submit a Check Payer Auth Enrollment API call OR submit a
Process a Payment request and include a Payer Auth Enrollment check (CONSUMER_AUTHENTICATION) in the same
call. The latter approach is recommended in almost all circumstances, unless there is a specific reason to separate the
Payer Authentication flow from the payment flow. With the combined call, if the cardholder is NOT enrolled, then the
authorization request is run and automatically populated with the correct parameters to indicate that 3DS was

M13: Implementing Payer Authentication Direct REST API - 11

Restricted - External

https://centinelapistag.cardinalcommerce.com/

attempted by the merchant. If the cardholder IS enrolled then the Authorization request will NOT be run and must be
submitted again after the authentication process has completed.

5.4.1 Key Request fields

It is recommended to include as much data as possible in your request, as this will increase the chance that the Issuer
will not require a challenge screen. See the Developer Center for comprehensive request and response details:

e Process a Payment:
o https://developer.cybersource.com/api-reference-assets/index.html#payments payments process-a-

payment
e Check Payer Auth Enrollment:

o https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication payer-
authentication check-payer-auth-enrollment_requestfielddescription

The following request fields are mandatory:

e processingInformation:
o actionlist: the static value “CONSUMER_AUTHENTICATION”
N.B Applicable only to the Process a Payment API.
e Payment card details: FLEX transient token, TMS token or card details.
e consumerAuthenticationinformation:
o returnUrl: In the event that a StepUp challenge screen is required, Smartpay Fuse adds this return
URL to the step-up JWT and returns it in the response of the Payer Authentication enroliment call. The
merchant's return URL page serves as a listening URL. Once the bank session completes, the merchant
receives a POST to their URL. This response contains the completed bank session’s transactionld. The
merchant’s return page should capture the transaction ID and send it in the Payer Authentication
validation call.
o referenceld: the value of consumerAuthenticationinformation:referenceld returned by the Payer
Auth Setup API.

5.4.2 Request Example 1 - Process a Payment + CONSUMER_AUTHENTICATION using FLEX token
{

"request”: {
"clientReferenceInformation": {
"code": "1604399973588"
s
"processingInformation"”: {
"actionList": [
"CONSUMER_AUTHENTICATION"
1
s
"orderInformation": {
"amountDetails": {
"totalAmount": "19.99",

"currency": "GBP"

T

"billTo": {
"firstName": "John",
"lastName": "Doe",
"address1": "High House",

"locality": "Redditch",

M13: Implementing Payer Authentication Direct REST API - 12

Restricted - External

https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment
https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication_payer-authentication_check-payer-auth-enrollment_requestfielddescription
https://developer.cybersource.com/api-reference-assets/index.html#payer-authentication_payer-authentication_check-payer-auth-enrollment_requestfielddescription

"postalCode": "WR7 3DQ",
"country": "GB",
"email": "john@test.com"

}
¥

"tokenInformation": {
"jti": "1C40VOWCUEZR3TOD3Z2TBAXIMIHF42K@C419SWAN60GOBUCK5TKH5FA136F1E1B6™

¥

"consumerAuthenticationInformation": {
"referenceld"”: "18818b40-05e0-40e9-a3d9-bf9bc6235ef8",
"returnUrl”: "http://example.com/redirect/"

}
}

N.B The above example assumes that the expiry date fields have been included in the FLEX token.
IMPORT NOTE

The value of “tokeninformation->jti” is the value of the JTI claim in the JWT returned by Flex Microform. See Appendix
A - Extracting JTI from Flex Microform Transient Token for further details.

5.4.3 Request Example 2 - Check Payer Auth Enrollment using Card Details

{
"clientReferenceInformation”: {
"code": "cybs_test"
s
"orderInformation": {
"amountDetails": {
"currency": "GBP",
"totalAmount"”: "10.99"
¥
"billTo": {
"address1": "1 Market St",
"address2": "Address 2",
"administrativeArea": "CA",
"country": "US",
"locality": "san francisco",
"firstName": "John",
"lastName": "Doe",
"phoneNumber": "4158880000",
"email": "test@test.com",
"postalCode": "94105"
}
s
"paymentInformation”: {
"card": {
"type": "001",
"expirationMonth": "12",
"expirationYear": "2025",
"number": "4111111111111111"
}
s
"consumerAuthenticationInformation™: {
"returnUrl"”: "https://example.com/",
"referenceId": "12345678"
}
}

M13: Implementing Payer Authentication Direct REST API - 13

Restricted - External

5.4.4 Request Example 3 - Check Payer Auth Enrollment using FLEX token
{

"clientReferenceInformation": {
"code": "cybs_test"

¥

"orderInformation”: {
"amountDetails": {
"currency": "GBP",
"totalAmount”: "10.99"

s
"billTo": {
"address1l": "1 Market St",

"address2": "Address 2",
"administrativeArea": "CA",
"country": "US",
"locality": "san francisco",
"firstName": "John",
"lastName": "Doe",
"phoneNumber": "4158880000",
"email": "test@test.com",
"postalCode": "94105"

}
¥

"tokenInformation": {
"transientToken": "1E4T90Y6Y43QTIH9IOWQMZ6US1YKID1PJZ0O5S3CYHED43HTAPMULSFB3EAC147B3"

¥

"consumerAuthenticationInformation": {
"returnUrl”: "https://example.com/",
"referenceld": "12345678"

}

N.B The above example assumes that the expiry date fields have been included in the FLEX token.

5.4.5 Key Response fields
The Process a Payment API will return the following key fields:

status Indicates whether a challenge screen is required. Possible values:
- PENDING_AUTHENTICATION:
A challenge screen is required.
- AUTHORIZED:
- PARTIAL_AUTHORIZED:
- AUTHORIZED_PENDING_REVIEW:
- AUTHORIZED_RISK_DECLINED:
- PENDING_REVIEW:
- DECLINED:
All the above values indicate that a challenge screen was not required and
the authorization request was submitted.
- INVALID_REQUEST:
An error has occurred.
consumerAuthenticationinformation: | The fully qualified URL that the merchant uses to post a form to the
stepUpUrl cardholder in order to complete the Consumer Authentication transaction
for the Cardinal Cruise APl integration.

M13: Implementing Payer Authentication Direct REST API - 14

Restricted - External

consumerAuthenticationinformation: = JSON Web Token (JWT) used to authenticate the consumer with the
accessToken authentication provider.
Note - Max Length of this field is 2048 characters.

The Check Payer Auth Enrollment API will return the following key fields:

status Indicates whether a challenge screen is required. Possible values:
- PENDING_AUTHENTICATION
A challenge screen is required.
- AUTHENTICATION_SUCCESSFUL
The card is enrolled, but no further authentication is required.
- AUTHENTICATION_FAILED
The card is enrolled, but the payer could not be authenticated.-
INVALID_REQUEST
An error has occurred.

consumerAuthenticationinformation: The fully qualified URL that the merchant uses to post a form to the
stepUpUrl cardholder in order to complete the Consumer Authentication

transaction for the Cardinal Cruise API integration.
consumerAuthenticationinformation: JSON Web Token (JWT) used to authenticate the consumer with the
accessToken authentication provider.

Note - Max Length of this field is 2048 characters.

5.4.6 Reply Example 1 - Process a Payment - Cardholder Enrolled
The following example illustrates the Process a Payment response for a cardholder who IS enrolled in 3DS:

"clientReferenceInformation”: {

"code": "1604405677017"

¥
"consumerAuthenticationInformation": {

"acsUrl": "https://@merchantacsstag.cardinalcommerce.com/MerchantACSWeb/creq.jsp",

"challengeRequired": "N",

"stepUpUrl": "https://centinelapistag.cardinalcommerce.com/V2/Cruise/StepUp",

"authenticationTransactionId": "xclgZXLwa6rlLe8fEuSo",

"pareq": "eyJtZXNzYWd1VHIwZSI6IKNSZXEiLCItZXNzYWd1VmVyc21lvbiI6IjIuMS4wIiwidGhyZWVEUIN1cnZ1
c1RyYW5zSUQiOiI5SYTZiNWIXMS@OzMTQALTQ3M2MtYTI30S03YmMMANWNmMNDEWODCcilCIhY3NUcmFuc®lEIjoiNjZhYTI30TctOD
Q4Ny©@OZTkwLWIZZmYtMDkyZmJiMzBkZDZiIiwiY2hhbGx1bmd1V21uZG93U216ZSI6IjAyIne",

"directoryServerTransactionId": "26269f8b-2bbb-4bef-ad4ab-ce2a548e75fd",

"veresEnrolled": "Y",

"threeDSServerTransactionId": "9a6b5b11-3148-473c-a279-7bc85cf48087",

"accessToken": "eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCI9.eylqdGkiOiJjNmNjNjNiMylkMWMILTQ2MWULO
Dk4MS@INTQ1ZDIjMWU2ZWYiLCIpYXQi0jE2MDQOMDU20TQsImlzcyI6IjVkZDgzYmYWMGUOMNKMTQ50GRjYmFjYSIsImV4cCI
6MTYWNDQWOTISNCwiT3INVW5pdE1KIjoiNWVINZVmYThjYTkyMjAwZ jdmOGI4AMGYOIiwiUGF5bGO9hZCI6eyIBQINVcmwiOiJod
HRwczovLzBtZXJjaGFudGFjc3NOYWcuY2FyZGluYWxjb21tZXJIjZS5jb20vTWVyY2hhbnRBQINXZWIVY3J1cS5qc3AiLCIQYX1
sb2FkIjoiZX1KdFpYTnpZV2RsVkhsd1pTSTZJa@5TW1hFaUxDSnRaWES6WVdkbFZtVn1jMmx2Ym1INk1qSXVNUzR3SW13aWRHa
H1aV1ZFVTFObGNuWmxjbFJI5WVclelNVUW1PaUk1WVRaaUSXSXhNUzB6TVRRNEXUUTNNMk10WVRIMOOTMDNZbUGOT1dObUSEZ3d
PRGNpTENKaFkzT1VjbUZ1YzBsRU1gb210alpoWVRIMOOUY3RPRFEOTnkwMFpUa3dMVOleWmlZdE1Ea31labUppTXpCalpEWml]a
XdpWTJoaGIHeGxibWRsV]jIsdVpHOTNVMmw2WININk1gqQX1IbjAiLCIJUcmFuc2FjdGlvbklkIjoieGNsZ1pYTHdhNnJIsTGU4ZkV
1UzAifSwiT23qZWN@aWZ5UGF5bGOhZCI6dHI1ZSwiUmVedXJuVXIsIjoiaHROcDovVL2xvY2FsaG9zdDo4MDE4L2N5YnMVMORTM
kRpcmVjdFJ1c3QvecmVkaXJ1Y3QucGhwIn®.d7whZpLBFhQbfCOC8spxf8Lj-xZLGmM8OBjGPyOsWlw",

"specificationVersion": "2.1.0",

"token": "AxjzbwSTR6YjyMUhH1XeAAIBT9s4wzW70hfzwTRAvSTLOYSQTkwDwAAAiBHI",

"acsTransactionId": "66aa2797-8487-4e90-b3ff-092fbb30ddeb"

¥

IVILS. TIMPIEmernung Fdyer AULNeEnucduorn vireCt _RecS31 AFI - 1O

Restricted - External

"errorInformation”: {
"reason": "CONSUMER_AUTHENTICATION_REQUIRED",
"message": "The cardholder is enrolled in Payer Authentication. Please authenticate the ca
rdholder before continuing with the transaction."
s
"id": "6044056945086494103006",
"status": "PENDING_AUTHENTICATION",
"submitTimeUtc": "2020-11-03T12:14:55Z"

5.4.7 Reply Example 2 - Process a Payment - Cardholder NOT enrolled
The following example illustrates the response for a cardholder who is NOT enrolled in 3DS, where the Authorization
request was approved by the issuer:

"_links": {
"void": {
"method": "POST",
"href": "/pts/v2/payments/6049548642236152503002/voids"
¥
"self": {
"method": "GET",
"href": "/pts/v2/payments/6049548642236152503002"

}
¥

"clientReferenceInformation”: {
"code": "MOB12345"
s
"consumerAuthenticationInformation": {
"authenticationTransactionId": "Y2wdSOau®hicHxtGPY©@0",
"veresEnrolled": "U",
"threeDSServerTransactionId": "66d867e6-68db-47a3-8bdf-b459f73fdc7a",
"ecommerceIndicator": "vbv_failure",
"directoryServerErrorCode": "101",
"directoryServerkErrorDescription”: "Invalid Formatted Message Invalid Formatted Message",
"specificationVersion": "2.1.0",
"token": "Axj//wSTR/JaNjs8iVraAAIU3YMWTByxZtHKiOGKtSzwFRHDFWpZ+dCcKCdQyaSZejFiCcmGBOTR/JaN
js8iVraASwly"
s
"id": "6049548642236152503002",
"orderInformation": {
"amountDetails": {
"totalAmount": "3.89",

"authorizedAmount": "3.89",
"currency": "GBP"
}
b
"paymentAccountInformation™: {
"card": {
"type": "@01"
}
1

"paymentInformation": {
"tokenizedCard": {
"type": "@01"
}
s

"processorInformation”: {

IVIL3: Implementing Payer Autnentication DIreCt REST APl - 1b

Restricted - External

"approvalCode": "3",

"cardVerification": {
"resultCodeRaw": "3",
"resultCode": "2"

s
"networkTransactionId": "123456789012345",

"transactionId": "123456789012345",
"responseCode": "0",
"avs": {

"code": "U",

"codeRaw": "00"

}
b
"status": "AUTHORIZED",
"submitTimeUtc": "2020-11-09T20:47:44Z"

}
}

5.5 STEP5 - POST to stepUpUrl

If authentication is required (Check Payer Auth Enroll returns status=PENDING_AUTHENTICATION) you must initiate
step-up authentication on your front end. This is done by creating an iframe to send a POST request to the step-up URL.
The iframe manages customer interaction with the card-issuing bank’s Access Control Server (ACS) and 3D Secure
version compatibility for 3D Secure 1.0 and 3D Secure 2.x.

Iframe Parameters

- Form POST Action: The URL posted by the iframe is the stepUpUrl field returned by the Check Payer Auth
Enrollment call.

- JWT POST Parameter: Use the accessToken field returned by the Check Payer Auth Enrollment call.

- MD POST Parameter: This optional merchant-defined data is returned in the response.

Example Code

The example below shows an example iFrame and form.

<iframe name="step-up-iframe" height="400" width="400" style="display: none;"></iframe>
<form id="step-up-form" target="step-up-iframe" method="post" action="<<stepUpUrl value>>">
<input type="hidden" name="JWT" value="<<accessToken value>>" />
<input type="hidden" name="MD" value="<<optional data returned as is”/>
</form>

Add JavaScript to invoke the iframe form POST. Place the JavaScript after the closing </body> tag (see Example below).
The JavaScript can be used to invoke the iframe form POST automatically when the Check Payer Auth Enroliment
request returns. You may also choose to submit the form at a different time, but you must do it before requesting the
Validate Authentication Results call (STEP 8).

function showStepUpScreen(stepUpURL, jwt){
document.getElementById('step_up_iframe').style.display="block";
document.getElementById('step_up_form').action = stepUpURL;
document.getElementById('step_up_form_jwt_input').value = jwt;

IVIL3. Implementing rayer Autnentication DIreCt REST API - 17

Restricted - External

var stepUpForm = document.getElementById('step_up form');
if(stepUpForm)submit();

5.6 STEP 6 - Receive the Authentication Result

After the customer interacts with the issuing bank, you get the session back through the page specified in the
returnURL field in "Step 4: Check Payer Auth Enrollment". The payload sent to the return URL contains the following
data items:

- TransactionlID: (Same value as the authenticationTransactionID field returned by STEP 4 Check Payer Auth
Enroliment). This is used in "STEP 7: Validate Authentication Results."
- MD: merchant data returned if present in the POST to step-up URL. Otherwise, null.

You must devise a mechanism to return the payload values back to your main page. The following example shows a
returnUrl example in PHP and the corresponding function in the main page Javascript:

returnUrl page in iFrame

<!DOCTYPE html>

<html>

<head>1

</head>

<body>

<script type="text/javascript">
var result = <?php echo $ POST[‘TransactionId’]; ?>;
function closeMe() {

parent.hideStepUpScreen(result);

closeMe();
</script>
</body>
</html>

Main Page JavaScript

function hideStepUpScreen(transactionId) {
// Hide the iFrame

// Call Validate Authentication Results with transactionId

5.7 STEP 7 - Validate Authentication Results + Authorization APl request

To check whether the cardholder authenticated successfully, you must submit a Validate Authentication Results API
call OR submit a Process a Payment request and include a Payer Auth Validation check
(VALIDATE_CONSUMER_AUTHENTICATION) in the same call. The latter approach is recommended in almost all
circumstances, unless there is a specific reason to separate the Payer Authentication flow from the payment flow.
With the combined call, if the cardholder DID successfully authenticate, then the authorization request is run and

M13: Implementing Payer Authentication Direct REST API - 18

Restricted - External

automatically populated with the correct parameters. If the authentication failed, then the Authorization request will
NOT be run and you can ask your customer try again.

5.7.1 Key Request fields

It is recommended to include as much data as possible in your request, as this will increase the chance that the Issuer
will not require a challenge screen. See the Developer Center for comprehensive request and response details:

e Process a Payment:
o https://developer.cybersource.com/api-reference-assets/index.html#payments_payments process-a-

payment
e Check Payer Auth Enrollment:

o https://developer.cybersource.com/api-reference-assets/index.html?stage=pilot#payer-

authentication payer-authentication validate-authentication-results

The following request fields are mandatory:

e consumerAuthenticationinformation:
o authenticationTransactionld: The Transactionld value returned in STEP 6.

The following items are only required for the Process a Payment API:

e processinginformation:
o actionlList: the static value “VALIDATE_CONSUMER_AUTHENTICATION”

e Payment card details: FLEX transient token, TMS token or card details.

5.7.2 Request Example 1 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION using
FLEX token

"processingInformation”: {
"actionList": [
"VALIDATE_CONSUMER_AUTHENTICATION"
1
s
"orderInformation": {
"amountDetails": {
"totalAmount": "3.89",

"currency": "GBP"
¥
"billTo": {
"firstName": "Pauline",
"lastName": "Evo",
"address1": "Little House",
"locality": "Ontheprairie",
"postalCode": "LH1 OTP",
"country": "GB",
"email": "pauline@test.com"
}

¥,
"tokenInformation": {
"jti": "1E66U6GB8RAEMDQ8GHOIIOLOL6FIFS2KO5LY8T5AI520V4A37PKZP5FAE7B642B88"

¥

"clientReferenceInformation": {

IVILS. Impliementing rayer Autnentcation vireCt ReS1 AFI - 19

Restricted - External

https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment
https://developer.cybersource.com/api-reference-assets/index.html?stage=pilot#payer-authentication_payer-authentication_validate-authentication-results
https://developer.cybersource.com/api-reference-assets/index.html?stage=pilot#payer-authentication_payer-authentication_validate-authentication-results

"code": "MOB12345"
b

"consumerAuthenticationInformation": {
"authenticationTransactionId": "DSOxJS51GIRYE4exZhyo@"

}
}

N.B The above example assumes that the expiry date fields have been included in the FLEX token.
IMPORT NOTE

The value of “tokeninformation->jti” is the value of the JTI claim in the JWT returned by Flex Microform. See Appendix
A - Extracting JTI from Flex Microform Transient Token for further details.

5.7.3 Request Example 2 - Validate Authentication Results

{
"clientReferenceInformation": {
"code": "pavalidatecheck"
¥
"consumerAuthenticationInformation": {
"authenticationTransactionId": "DSOxJS51GIRYE4exZhy®@"
}
}

5.7.4 Key Response fields
The Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION API will return the following key fields:

status Indicates status of the transaction. Possible values:
- AUTHORIZED:
- PARTIAL_AUTHORIZED:
- AUTHORIZED_PENDING_REVIEW:
- AUTHORIZED_RISK_DECLINED:
- PENDING_REVIEW:

All the above values indicate that the authentication was successful and
the authorization request was submitted.
- DECLINED:
Either the authentication failed or the authorization request was declined
(e.g. insufficient funds). You can examine
consumerAuthenticationIinformation:authenticationResult to see whether
the authentication was successful.
- INVALID_REQUEST:
An error has occurred.
consumerAuthenticationinformation: | Raw authentication data that comes from the card-issuing bank. Primary
authenticationResult authentication field that indicates if authentication was successful and if
liability shift occurred. Possible values:

-1: Invalid PARes.

- 0: Successful validation.

- 1: Cardholder is not participating, but the attempt to authenticate was
recorded.

M13: Implementing Payer Authentication Direct REST API - 20

Restricted - External

- 6: Issuer unable to perform authentication.
- 9: Cardholder did not complete authentication.

The Validate Authentication Results API will return the following key fields:

status Indicates whether authentication was successful. Possible values:
- AUTHENTICATION_SUCCESSFUL
Authentication was successful.
- AUTHENTICATION_FAILED
Authentication failed.
- INVALID_REQUEST
An error has occurred.
consumerAuthenticationinformation: Raw authentication data that comes from the card-issuing bank.
authenticationResult Primary authentication field that indicates if authentication was
successful and if liability shift occurred. Possible values:

-1: Invalid PARes.

0: Successful validation.

1: Cardholder is not participating, but the attempt to authenticate was
recorded.

6: Issuer unable to perform authentication.

9: Cardholder did not complete authentication.

5.7.5 Reply Example 1 - Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION

The following example illustrates the Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION response where
the cardholder successfully authenticated and the Authorization was approved:

~

"_links": {
"void": {
"method": "POST",
"href": "/pts/v2/payments/6052697807316824104005/voids"

¥
"self": {

"method": "GET",

"href": "/pts/v2/payments/6052697807316824104005"
}

¥

"clientReferenceInformation": {
"code": "MOB12345"

s

"consumerAuthenticationInformation": {
"indicator": "vbv",
"eciRaw": "@5",
"cavv": "AAABAWFI1mQAAAABjRWWZEEFgFz+=",
"paresStatus": "Y",
"authenticationResult": "o",
"xid": "RFNPeEpTNWxHSVJZRTRleFpoeTA=",
"cavvAlgorithm": "2",
"authenticationStatusMsg": "Success",
"eci": "@5",
"specificationVersion": "1.0.2",

M13: Implementing Payer Authentication Direct REST API - 21

Restricted - External

"token": "Ax3j//wSTSB40Sy/xCBXFAAIU3YMWTFu3csHCiOGQuQ6gFRHDIXIdWACcKCfQyaSZejFiCcmGAaTSB40S

y/XCBXFAtmW6"
s
"id": "6052697807316824104005",
"orderInformation": {
"amountDetails": {
"totalAmount": "3.89",

"authorizedAmount": "3.89",
"currency": "GBP"
¥
3
"paymentAccountInformation": {
"card": {
"type": "001"
}
1

"paymentInformation”: {
"tokenizedCard": {
"type": "@01"
s
"scheme": "VISA DEBIT",
"bin": "400000",
"accountType": "Visa Classic",
"issuer": "JPMORGAN CHASE BANK",
"binCountry": "US"

s
"processorInformation”: {
"approvalCode": "3",
"cardVerification": {
"resultCodeRaw": "3",
"resultCode": "2"
¥
"networkTransactionId": "123456789012345",
"transactionId": "123456789012345",
"responseCode": "0",
"avs": {
"code": "U",
"codeRaw": "00"
¥
s

"status": "AUTHORIZED",
"submitTimeUtc": "2020-11-13T12:16:21Z"

5.7.6 Reply Example 2 - Process a Payment + VALIDATE_ CONSUMER_AUTHENTICATION
The following example illustrates the Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION response where
the cardholder successfully authenticated but the Authorization was declined by the issuer:

"_links": {
"self": {
"method": "GET",
"href": "/pts/v2/payments/6052823560456722904001"

}

s

"clientReferenceInformation": {
"code": "MOB12345"

¥

IVIL3: Impiementing Payer Autnentication DIFreCt REST APl - 22

Restricted - External

"consumerAuthenticationInformation": {
"indicator": "vbv",
"eciRaw": "@5",
"cavv": "AAABAWF1mQAAAABjRWWZEEFgFz+=",
"paresStatus": "Y",
"authenticationResult": "o",
"xid": "R1hGVFpYdklTazMycEhLT25XVDA=",
"cavvAlgorithm": "2",
"authenticationStatusMsg": "Success",
"eci": "@5",
"specificationVersion": "1.0.2",
"token": "Axj77wSTSB/NDwBYFVPBAAJRHDIFOpACojhkPnUjOiXorAJ8mXpJ1l6MWIJyYAOmkD+aHgDkLeeCAFDoL

s
"errorInformation”: {
"reason": "PROCESSOR_DECLINED",
"message": "Decline - General decline of the card. No other information provided by the is
suing bank."
s
"id": "6052823560456722904001",
"processorInformation”: {
"cardVerification": {
"resultCodeRaw": "3",
"resultCode": "2"

¥
"responseCode": "5",
"avs": {
"code": "U",
"codeRaw": "00"
}

Yo
"status": "DECLINED",

"submitTimeUtc": "2020-11-13T15:45:56Z"

5.7.7 Reply Example 3 - Process a Payment + VALIDATE_ CONSUMER_AUTHENTICATION
The following example illustrates the Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION response where
the cardholder failed to authenticate, and so the Authorization request was not run:

"clientReferenceInformation": {
"code": "MOB12345"
¥
"consumerAuthenticationInformation": {
"eciRaw": "@7",
"paresStatus": "N",
"authenticationResult": "9",
"xid": "TkhuekdnZlBKaUtscTNLV2pUVTA=",
"authenticationStatusMsg": "User failed authentication",
"specificationVersion": "1.0.2",
"token": "AxjzbwSTSB/cuY11BKAGAAIBURwyH1PZnQycQE+XcOky9GLEESMA4AAADQwW+"
¥
"errorInformation”: {
"reason": "CONSUMER_AUTHENTICATION_FAILED",
"message": "Encountered a Payer Authentication problem. Payer could not be authenticated."”
¥,
"id": "6052827970086541504006",
"status": "DECLINED",

IVIL3: Impiementing Payer Autnentication DIFeCt REST APl - 43

Restricted - External

"submitTimeUtc": "2020-11-13T15:53:19Z"

5.7.8 Reply Example 4 - Validate Authentication Results - Successful Authentication
The following example illustrates the Process a Payment + VALIDATE_CONSUMER_AUTHENTICATION response where
the cardholder failed to authenticate, and so the Authorization request was not run:

{

"clientReferenceInformation": {
"code": "pavalidatecheck"

s

"consumerAuthenticationInformation": {
"indicator": "vbv",
"eciRaw": "@5",
"cavv": "AAABAWF1mQAAAABjRWWZEEFgFz+=",
"paresStatus": "Y",
"authenticationResult": "o",
"xid": "dUtORVFvemJWbO9yNmVvOVc5eTA=",
"cavvAlgorithm": "2",
"authenticationStatusMsg": "Success",
"eci": "@5",
"specificationVersion": "1.0.2",
"token": "AxijLwSTSCAgLV1IINEDCAAJRHDIf/WIAE+hk@ky9GLEESMAA6WMh"

s

"id": "6052846956246694904002",

"status": "AUTHENTICATION_SUCCESSFUL",

"submitTimeUtc": "2020-11-13T16:24:55Z2"

}

M13: Implementing Payer Authentication Direct REST API - 24

Restricted - External

6 Flex Microform with Payer Authentication

To avoid exposure to card payment details on the merchant server and the additional PCI DSS implications
that go with it, it is highly recommended to use the Flex Microform 0.11 to capture the payment details. This
frontend integration method returns a token that can be used in place of the card details in all of the APIs used
for Payer Authentication. The Microform consists of two hosted fields that can be embedded on the merchant
payment page to capture the card number and the CVN. You have full control over the styling of the fields but
no access to the card number and CVN entered. The masked PAN and the token are accessible by JavaScript
on the page. Full details of how to use the Flex Microform is documented in a separate document: M07: FLEX
Microform Integration.pdf.

7 Payer Authentication Testing

To test different Payer Authentication scenarios Smartpay Fuse has a set of test PANs, for Visa, MasterCard
and Amex, which trigger different responses from the Payer Authentication platform.

For test PANs please refer to a separate document: “MO05 Test Cases.pdf”

As an expiry month for your test transactions, please select always December, for the expiry year — current
year + 2. If you are asked to provide a Payer Authentication password, please use “1234”.

8 Generating a REST API key

You will need to create a REST Shared Secret security key to be able to make the server-side REST API calls used for
Payer Authentication. The following steps show you how this is done:

1) Loginto EBC, select Payment Configuration -> Key Management, Select Keys: APl Keys and click on GENERATE

KEY button.
Payment Configuration
() Dashboard PR | GENERATE KEY
Key Management
‘g Virtual Terminal v
Showing 4 keys Key Subtype: All Keys @ + ADDAFILTER
Transaction Management v
Key List
@ Decision Manager v
Token Management N Keys Key Type Creation Date ~ Expiration Date Status Merchant ID
@ O 58931320315101771... Certificate 2020-05-12 19:53:23 ... 2022-05-12 19:53:23 ... ~ Active jakubtest
Device Management v
ﬁ (O 5e99eee3-a49c-486a-.. Shared Secret Key 2020-05-13 08:47:09 ... 2023-05-13 08:47:09 Active jakubtest
Tools v
O 0668731a-7db6-4b9f... Shared Secret Key 2020-06-01 13:08:31 ... 2023-06-01 13:08:31 Active jakubtest
D Reports v
O 60267455459301771... Certificate 2020-10-1411:22:34 ... 2022-10-1411:22:34 ... ~ Active jakubtest
[I 0 Analytics v

@ Payment Configuration

Digital Payment Solutions

Payer Authentication
Configuration D

Kev Management

2) The Create Key window appears. Select API Cert / Secret and click NEXT STEP.

Restricted - External

Barclays

Key Management

Create Key

@ selectkey

Select a key type

What type of key are you creating?

o Transaction Processing
(® APICert/Secret

NEXT STEP

26

Restricted - External

Barclays

3) In the next menu select Shared Secret and then SUBMIT.

Key Management

Create Key

Q Select key e Select option

Select a key subtype

For API Cert / Secret key type, type of key subtype are you creating?

QO cerificate
@® shared Secret

Key Configuration

Shared API authenticates using a base-64-encoded transaction key represented in string format. The Shared API
generates a key you can copy to your clipboard or download as a text file.

& PREVIOUS STEP CANCEL SUBMIT

4) In the next window copy or download the Shared secret key, which is the first credential for REST API request,
and click on KEY MANAGEMENT.

Key Management

Create Key

Shared secret key

You may download this key one time from this screen.

Key
PwnnwFDMMIBnJ/IFPJXZUuDKvIMWHTD3rHIwMVagQmags=

i DOWNLOAD KEY

KEY MANAGEMENT CREATE ANOTHER KEY

27

Restricted - External

Barclays

5) In Key Management window select Keys: APl Keys option to find newly created key.

Payment Configuration
GENERATE KEY
Key Management
Showing 6 keys Key Subiype: All Keys @ + ADDAFILTER
Key List ﬁ

Keys Key Type Creation Date * Expiration Date Status
O b72b294c-aed1-43fe-978.. Shared Secret Key 2019-01-2411:22:22 +0000 2022-01-2411:22:22 +0000 .~ Active -
O 7{6d1f37-ca8c-40d5-afd1-.. Shared Secret Key 2019-02-1219:01:27 +0000 2022-02-1219:01:27 +0000 .~ Active
O Ocece072-0572-4323-025.. Shared Secret Key 2019-02-12 19:01:59 +0000 2022-02-1219:01:59 +0000 .~ Active
O bea7f479-ca78-45fd-bb0d.. Shared Secret Key 2019-02-12 19:02:37 +0000 2022-02-12 19:02:37 +0000 . Active
O b11a89e3-7eff-4cca-8ff5-.. Shared Secret Key 2019-02-14 17:14:32 +0000 2022-02-14 17:14:32 40000 - Active
p f1c977c1-7605-4794-862. Shared Secret Key I 2019-02-1417:26:16 +0000 2022-02-1417:26:16 40000 - Active

6) Click on the link in the Keys column to see the key details and copy Key Detail parameter, which is the second
credential for REST API request.

Key Management

Key Detall: f1c977¢c1-760a-4794-8624-6dad9b59521f4 | « BACKTORESULTS

Key Information

Key Type Activation Date

API: Shared Secret 2019-02-14 17:26:16
+0000

Status

Active Expiration Date
2022-02-1417:26:16

Audit Logs +0000

You now have the two credentials required for the REST API authentication process:

- Key detail (key id)
- Shared secret key

28

Restricted - External

Barclays

Appendix A - Extracting JTI from Flex Microform Transient Token

Flex Microform will return a transient token in the form of a JWT. E.g.

eyJraWQiOiIwOE1aMGINZzBZVzcxQlUxXNjBBYTRhS2pCUWRPQXFVViIsImFsZyI6I1JTMjU2In@.eyJkYXRhIjp7ImVAcGlyYX
Rpb25ZZWFyIjoiMjAyMSIsIm51bWI1ciI6IjQXMTEXMVhYWFhYWDEXMTEiLCJ1eHBpcmFOaWOuUTWOudGgiOiIxMiIsInR5¢cGUL
OiIwMDEifSwiaXNzIjoiRmx1eC8wOCIsImV4cCI6MTYXMDM2NDUzMSWwidH1wZSI6ImImMLTAUMTEUMCISIm1hdCI6MTYXMDM2Mz
YzMSwianRpIjoiMUUBVkIMQjdIV1IEyMVY2VVVUT1Y3N11ZNVRHUTIJQUUSRTRHSINXUERCNDEgXOTEYQOwyUDVGRkMzNjczMzY5
RCJ9.hLPTwEfocxwn-P2TRKRMMKSLU5bg3pQJixmycwSGONU9VM1z3537vVT_nIh4vDZGhKoWkLvjZP- Hjjp6ISWOIS0s02LX
uiWadtp4rsxVT7cDK-Gw9ZghUCNWDA1F2GiUxFxFQgUIFIQH1aKSXQ76yj2y63m--0fdpaQBfSCy6k2ndjPdZSESNKhjxGzZg
25n6t1GSrfxm7RSDI_Vj6kMLgXxSbAugi84ZKDF -GqDuBcWZjRoeRxs4iRu21jt4HISeCMARiielm3tpbjVN7REFcVIFxyM7CGD
ncfUX7582I6edusOR6ziKY3Zz8xEFfQ6gQdFbCmnTctrXiqaYZ5WQA

When BASE 64 decoded, the JWT will have the following format:

Header:
{
"kid": "@8MZ@bMg@YW71CU160Aa4akjBQdOAqoV",
"alg": "RS256"
}
Payload:
{
"data": {
"expirationYear": "2021",
"number": "411111XXXXXX1111",
"expirationMonth": "12",
"type": "001"
¥
"iss": "Flex/08",
"exp": 1610364531,
"type": "mf-0.11.0",
"iat": 1610363631,
"jti": "1E4VBLB7HVQ21V6UUTOV76YY5TGQ2IAE9E4AGKSWPDB481912CL2P5FFC3673369D"
}

The “jti” value is the value to be used in the tokenInformation->transientToken field in the Setup Payer Authentication
API, and in the tokenInformation->jti field in the Process A Payment API.

Disclaimer

Barclays and Barclaycard offers corporate banking products and services to its clients through Barclays Bank PLC. This
presentation has been prepared by Barclays Bank PLC ("Barclays"). This presentation is for discussion purposes only,
and shall not constitute any offer to sell or the solicitation of any offer to buy any security, provide any underwriting
commitment, or make any offer of financing on the part of Barclays, nor is it intended to give rise to any legal
relationship between Barclays and you or any other person, nor is it a recommendation to buy any securities or enter
into any transaction or financing. Customers must consult their own regulatory, legal, tax, accounting and other
advisers prior to making a determination as to whether to purchase any product, enter into any transaction of financing
29

Restricted - External

Barclays

or invest in any securities to which this presentation relates. Any pricing in this presentation is indicative. Although the
statements of fact in this presentation have been obtained from and are based upon sources that Barclays believes to
be reliable, Barclays does not guarantee their accuracy or completeness. All opinions and estimates included in this
presentation constitute Barclays’ judgement as of the date of this presentation and are subject to change without
notice. Any modelling or back testing data contained in this presentation is not intended to be a statement as to future
performance. Past performance is no guarantee of future returns. No representation is made by Barclays as to the
reasonableness of the assumptions made within or the accuracy or completeness of any models contained herein.

Neither Barclays, nor any officer or employee thereof, accepts any liability whatsoever for any direct or consequential
losses arising from any use of this presentation or the information contained herein, or out of the use of or reliance on
any information or data set out herein.

Barclays and its respective officers, directors, partners and employees, including persons involved in the preparation or
issuance of this presentation, may from time to time act as manager, co-manager or underwriter of a public offering or
otherwise deal in, hold or act as market-makers or advisers, brokers or commercial and/or investment bankers in
relation to any securities or related derivatives which are identical or similar to any securities or derivatives referred to
in this presentation.

Copyright in this presentation is owned by Barclays (© Barclays Bank PLC, 2012). No part of this presentation may be
reproduced in any manner without the prior written permission of Barclays.

Barclays Bank PLC is a member of the London Stock Exchange.

Barclays is a trading name of Barclays Bank PLC and its subsidiaries. Barclays Bank PLC is registered in England and
authorised and regulated by the Financial Services Authority (FSA No. 122702). Registered Number is 1026167 and its
registered office 1 Churchill Place, London E14 5HP.

Barclaycard is a trading name of Barclays Bank PLC and Barclaycard International Payments Limited. Barclays Bank PLC
is authorised by the Prudential Regulation Authority and regulated by the Financial Conduct Authority and the
Prudential Regulation Authority (Financial Services Register number: 122702). Registered in England No. 1026167.
Registered Office: 1 Churchill Place, London E14 5HP. Barclaycard International Payments Limited, trading as
Barclaycard, is regulated by the Central Bank of Ireland. Registered Number: 316541. Registered Office: One
Molesworth Street, Dublin 2, Ireland, D02 RF29. Directors: Paul Adams (British), James Kelly, Mary Lambkin Coyle and
Michael Reed (USA). Calls may be recorded for security and other purposes.

30

Restricted - External

